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Abstract

When inventors move to new locations, they carry knowledge and expertise, which
may be a loss to their previous collaborators. But they might also become a bridge
between otherwise disconnected innovation hubs, facilitating information flows and idea
diffusion. In this paper, I study the effect of an inventor’s relocation on their previous
collaborators’ productivity. A simple patent production model addresses the dual role of
relocators as former collaborators and as intermediaries providing access to information.
The model helps to guide the empirical analysis and to interpret the results. Empirically,
I build a novel dataset combining information about inventors from the USPTO patent
data with online professional profiles. Using a matching design, I find sizeable positive
effects on the productivity of inventors whose collaborators have relocated. These effects
pertain not only to quantity, as gauged by the number of patents, but also to quality,
as measured by the number of citations. I show that the core mechanism driving both
effects is greater access to novel information networks and information.
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1 Introduction

Inventors’ mobility matters for innovation. When inventors relocate to innovation clusters
they experience an increase to their patenting productivity (Moretti, 2021).1 This effect can
be attributed to several factors, including agglomeration externalities, knowledge spillovers,
and the collaborative nature of innovation, where patents are often the result of teamwork
(Jones, 2009).

While a large literature has focused on the effect of a reallocation of an innovator on their
own patenting productivity, surprisingly little is know about the effects on the productivity
of the movers’ colleagues, who remain in the origin location. Given that most patenting
activity involves team efforts, with more than 70 percent of patents filed with the United
States Patents and Trademark Office in 2022 having at least two inventors listed, it seems
reasonable that the reallocation of a colleague impacts the productivity of the inventors that
stayed in the original location.2 And this effect might be as important as the productivity
effects related to the mover’s patenting activity. In this paper, I quantify the impact of
an inventor’s relocation on their former co-inventors’ productivity, both theoretically and
empirically.

Ex-ante, it is unclear whether a colleague’s departure positively or negatively impacts the
productivity of their former collaborators. On the one hand, when inventors relocate they
take their skills and expertise with them, so in a world where the inventors who stay in the
origin location are destitute since they lost access to all of their productive colleagues, the
effect is expected to be negative.3 But, on the other hand, in a world where their former
collaborators expose them to new techniques and ideas, the situation becomes more complex.
In this instance, it is not clear whether the inventors staying in the origin location are better
off, even if they stop co-patenting with the mover entirely. Understanding which of these
scenarios applies is crucial for innovation.

I develop this argument formally in a simple model of team production and patent cre-
ation. I build on recent advances in network theory to illustrate the distinct roles information
sharing and collaboration play after a collaborator’s relocation. In the model, the net effect

1See also Ellison and Glaeser (1997) and Bloom, Hassan, Kalyani, Lerner and Tahoun (2021) who high-
lighted the existence of innovation clusters. And Ellison and Glaeser (1999), Ellison, Glaeser and Kerr (2010)
and Greenstone, Hornbeck and Moretti (2010) who document the advantageous outcomes they offer to both
inventors and firms deciding to relocate there.

2Rising collaboration rates appear in the ascending pattern observed in both the average count of inventors
listed on a patent and the proportion of patents generated through collaborative efforts, as demonstrated
in Jones (2009). It is part of a longer trend that reflects a shift towards collaborative knowledge creation,
facilitated by information sharing (Wuchty, Jones and Uzzi, 2007).

3As was shown by Azoulay, Graff Zivin and Wang (2010) and Jaravel, Petkova and Bell (2018) who use
death shocks as a source of an exogenous variation.
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of the move depends on the network characteristics, such as the intensity of the collaboration
between inventors and the extent to which a colleague’s move offers access to a new network
and novel information. While the answer to this question is empirical in nature, the model
helps to interpret the results and to guide the empirical test.

A significant obstacle in this work is the endogeneity of relocations, as they are determined
by various observed and unobserved factors, with workers and firms deciding when the move
occurs and its destination. One concern, for instance, is selection bias. If the inventors
who stay in the origin location when their collaborator relocates are substantially different
from the inventors who do not experience the relocation of their collaborators, the estimated
results might reflect this difference instead of a true effect.

To overcome this challenge, I build on the methodology introduced in Jaravel et al. (2018).
I create a control group of inventors who have never experienced a relocation of a collaborator
but have collaborated with an inventor who is similar to a mover. The similarity is based
on various observables using an exact matching procedure. I then identify all inventors who
have collaborated with those in the matched control group. By adopting this approach, I can
compare the treatment group (co-inventors of movers) to the control group in a difference-
in-difference research design. This procedure helps to mitigate the endogeneity concern and
enables a more robust estimation of the causal effect of co-inventor relocations on the stayers’
productivity.

An additional hurdle is related to the structure of the patent data. Although the patent
data allows for the tracking of inventors over time, observations are tied to patenting activity,
meaning that information on inventors, such as location, is only observed when they apply
for patents. Since most inventors do not patent every year, it becomes difficult to locate
inventors with certainty during the time intervals between patents.

To surmount this challenge, I compile a novel dataset by merging information about in-
ventors in the United States with their online professional profiles. This enables me to create
a comprehensive longitudinal record of inventors based in the United States and, in turn,
allows me to track their locations over time. Consequently, I can identify the timing of all
moves and gain valuable insights into the characteristics of the move. These specifics, includ-
ing details about the firms where the movers are employed and the geographical distances
involved, enable a comprehensive exploration of the impacts of co-inventor relocations on
innovation networks and productivity, as well as the underlying factors shaping these effects.

The procedure I employ results in a longitudinal data on approximately 300,000 inventors
based in the United States between 1990 and 2022. I identify 49,902 inventors who relocated
during this period. Following a co-inventor’s move, I find that the inventors who remain in
the original location increase their annual number of patent applications by an average of
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about 9 percent, when compared to the control group. This overall effect becomes evident
over approximately three years and weakly increases over time. Notably, this increase in
innovation quantity does not seem to compromise on quality, as there is an increase of
almost 15 percent in the average number of adjusted forward citations, compared to the
control group.4

I then explore the specific mechanism that drives the estimated positive effects. I first
address a concern related to common team productivity shocks, which could bias the results
upwards and overstate the positive effect of the move. If the timing of the relocation aligns
with periods following a heightened patenting success, it is conceivable that the inventors
staying in the origin location, who are also listed on these successful patents, might experi-
ence the benefits of the success in ways distinct from a relocation, yet still impacting their
productivity, such as research grants or improved working conditions. I show that the size of
the effect changes in ways that do not align with the common shock reasoning.

Next, I present evidence on information flows towards the inventors who stayed in the
origin location. I show that, after the move, the inventors who remain in the origin location
start citing patents which are produced in the mover’s destination more frequently than
before the move. Additionally, when compared to the control group, I show evidence that the
inventors who remain in the origin location expand their network into the mover’s destination
location, after the move. The findings imply that some information flows from the mover’s
destination to their former collaborators after the move, either by an exposure to patents
produced in that location or directly through collaboration with inventors who are located
there. I support this reasoning by showing further evidence on the likelihood of patenting in
the same technology class after the move.

Finally, to establish that this mechanism predominantly hinges on the access to new
information networks, I examine the effect by contrasting two scenarios. In the first scenario,
I analyze cases where the inventor who stayed had previously collaborated with inventors
in the destination location before the move, and compare that to a scenario in which such
collaborations did not exist. This comparison allows me to assess the difference between
cases where the inventor gains access a new cohort of inventors potentially possessing novel
information and cases where the information exchange may have already taken place. I
find a positive and statistically significant impact when the network is new, while observing
a statistically insignificant effect when access happened prior to the move. Specifically, in

4Hall, Jaffe and Trajtenberg (2001) and Lerner and Seru (2021) emphasize the importance of weighted
number of patents to account for the potential bias generated by patenting trends over time and field. Hall,
Jaffe and Trajtenberg (2005) and Lerner, Sorensen and Strömberg (2011) show that the adjusted number of
citations not only sheds light on an inventor’s patenting activity and the influence of the patent, but is also
shown to carry economic value.
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comparison to the control group, the left-behind inventors experienced a 10 percent increase
in their annual number of patents and a 21 percent increase in their annual number of adjusted
citations.

Collectively, these findings suggest that the main driving force behind the observed effects
is access to a new network and, consequently, to new information resulting from co-inventor
relocations.

This paper is connected to various strands of the literature. Firstly, it relates to studies
that examine the effects of migration on productivity in the origin location (Kerr, Kerr,
Özden and Parsons, 2016, 2017; Kerr, 2008; Waldinger, 2012) and the horse race between
“brain drain” and “brain gain.”5 I, not only focus specifically on domestic migration within
the United States and the effects thereof, but also take into account some characteristics of
the move and the mover, which explain some of the differential effects that I estimate.

Additionally, it relates to research papers such as Azoulay et al. (2010) and Jaravel et al.
(2018) that study adjacent topics, and in particular the significance of team-specific capital
and network structure and find a negative effect on the productivity and labor market out-
come of inventors and scholars experiencing the unexpected death of one of their colleagues.
In a sharp contrast, I estimate positive productivity effects, which also evolve over time, fol-
lowing a colleague’s relocation. These results are quite surprising and hinge on the idea that
in contrast to a death shock, which implies a complete discontinuation of any relationship, a
colleague’s relocation introduces the potential for spillovers, either directly trough continued
collaboration or even in the form of network expansion, both of which are impossible when
the colleague passes away. Figure 1 illustrates that both these avenues are open in the case of
a relocation, and both can be used to share information, resulting in the positive spillovers we
observe. Specifically, the links between inventors who stay in the original location after their
co-inventor’s move and inventors in the destination locations expand, leading to increased
collaboration from 4 percent to almost 16 percent. And since experiencing a colleague’s re-
location is an order of magnitude more common than a colleague’s death, it has important
implications for innovation.

5In a more recent paper, Prato (2022) examines the impact of migrants from Europe on innovation activ-
ity in the United States, as well as the reciprocal effect. Similarly, Bernstein, Diamond, Jiranaphawiboon,
McQuade and Pousada (2022) study the influence of high-skill migration on innovation within the United
States. Moser, Voena and Waldinger (2014) use the emigration of Jewish Germans from Germany to the
United States to address this topic in the setting of Chemical innovation. Other papers highlight the pos-
sibility that reallocation of skilled labor into the innovation sector can have negative effects on technology
adoption in other parts of the economy, resulting in a form of brain drain (see for instance recent work by
Trouvain (2022)).
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Figure 1: Collaboration Patterns Post-Move
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Notes: This plot depicts a comparison of the likelihood of having a collaborator in the destination location
of the mover before and after the relocation. The first bar on the left shows the probability of having
a collaborator in the destination location prior to the move, while the subsequent two bars represent the
probability after the move. The middle bar includes all inventors in the destination, and the right bar
only counts inventors other than the mover in the destination. The probability is calculated by dividing
the number of origin location inventors with collaborators in the destination by the total number of origin
location inventors.

This research is also connected to Moretti (2021), who studies how the size of an inno-
vation cluster affects the innovative output of inventors within that cluster. Leveraging the
variations introduced in this paper, as well as the definition of economic regions, my study fo-
cuses on understanding the effects on inventors who stayed in the origin location when their
collaborators relocate, rather than concentrating on the relocating individuals themselves.
This approach enables me to delve deeper into the effects associated with relocations from a
different perspective, and study the implications for the other group of inventors who might
be affected by this relocation.

My results add to the results by Agrawal, Kapur and McHale (2008), by showing that
collaboration with an inventor who moves to a new location, can serve as a channel though
which the stayer can get access to a new network and, therefore, to promote knowledge
spillovers between inventors who are not co-located. It also corroborates the findings of
Zacchia (2020), which demonstrate that collaborative patent activities spanning different
firms facilitate the transfer of knowledge between these firms. In contrast, my focus is on
the individual productivity of inventors, and I use prior collaboration as a prerequisite for
subsequent knowledge spillovers, rather than leveraging current collaboration for immediate
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spillovers. Moreover, I examine situations where an inventor relocates and analyze how this
relocation affects the productivity of inventors who remain in their original location. This
analysis includes cases where the relocation leads to the termination of the mover and the
left behind collaborative relationships, and I do not assume a static framework. Moreover,
some of the effects I capture follow from within firm relocations and spillovers.

My research is also closely related to Zacchia (2018). However, there are notable differ-
ences between our studies. First, I do not restrict the relocations to be undertaken by su-
perstar collaborators, thus examining the question in a broader context. Second, my dataset
offers more comprehensive information about inventors, including their locations even even
in years in which they do not patent. This allows me to create a comparable control group
through exact matching and use a different identification strategy that leverages recent ad-
vancements in the field. Additionally, I provide insights into the mechanisms behind the
observed results, a facet not investigated in the referenced paper.

Lastly, this study is connected to other related literature that study team-based innova-
tion and the significance of collaborative efforts in idea generation (Crescenzi, Nathan and
Rodríguez-Pose, 2016; Jaffe, Jones et al., 2015; Jones, 2009; Wuchty et al., 2007). It also
has relevance to the theoretical literature concerning team-based or network-based human
capital (Chillemi and Gui, 1997; Mailath and Postlewaite, 1990) and theories encompassing
the transfer of knowledge among inventors (Jarosch, Oberfield and Rossi-Hansberg, 2021;
Lucas Jr, 2009; Lucas Jr and Moll, 2014; Stein, 2008). Additionally, while I focus on collabo-
ration between geographical locations within the United States, Kerr and Kerr (2018) study
the characteristics of collaborative patents where the inventors listed on them are located
both within and outside of the United States.

The reminder of the paper is organized as follows. In Section 2, I outline the model.
Section 3 describes the data and sample construction. Section 4 reports the estimates. Section
5 covers the mechanisms and Section 6 concludes.

2 A Model of Collaboration

In this theoretical section, I provide a simple framework that can be used to form predictions
and elucidate the empirical findings on the productivity effect of a relocation on the mover’s
former patent collaborators.

The model incorporates two key drives of inventors’ productivity: collaboration, through
team-production, and information sharing on a network. While both information acquisition
and collaboration are integral components of the patent production function, the channels
through which they affect one’s productivity are distinct. Therefore, the model allows me
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to explore the scenarios in which the cost of losing a collaborator due to a relocation can be
offset by the opportunity to access a new information network through the mover in their
new location.

2.1 Basic Framework

2.1.1 Inventors’ Network

A society of n inventors is connected via a directed and weighted network, which has an
adjacency matrix W ∈ [0, 1]n×n. A general element wij ∈ [0, 1] represents the status and the
intensity of the relationship between inventor i and inventor j. One can think about wij as
the share of the patents both inventor i and inventor j are listed on out of the total number
of patents inventor i is listed on. Similarly, wii is the fraction of solo-patents produced by
inventor i by themselves. In other words, wij is a proxy for the fraction of time inventor
i spends with inventor j producing patents. Specifically, an entry wij = 0 implies that
inventor i and inventor j do not collaborate on patents, and therefore are not connected.
And a higher wij corresponds to a stronger relationship. Note that although the matrix
W is not symmetric by assumption, collaboration is a reciprocal relationship, and therefore
wij > 0 is and only if wji > 0.6

Figure 2 presents an example of a network with three inventors. In this example, inventor
1 collaborates with inventor 2 and inventor 3, with whom they spend 0.5 and 0.15 of their
time, respectively. Inventor 2 and inventor 3 do not collaborate with one another, and they
spend 0.25 and 0.35 of their time patenting with inventor 1, respectively.

Figure 2: Network of Inventors
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Inventors also have a fixed ability level αi ∈ R+ and an initial knowledge level ki ∈ R+.
These concepts play a central role in patent production and information sharing. Specifically,

6The reciprocity is only with respect to zero. That is, either both the elements wij and wji are greater
than zero, or both are equal to zero. However, when positive, I impose no assumption on whether they are
equal or not.
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inventors exchange their knowledge through collaboration and apply their skills when creating
patents.

2.1.2 Information Acquisition

Inventors acquire information through their network of inventors, not just from their im-
mediate connections, but also from inventors located farther away. In particular, inventors
can acquire information from inventors they collaborate with directly, as well as their second
degree connections.7

To formalize this concept, it is helpful to introduce the definition for second degree con-
nections.8

Definition 1 (Second-degree Connection). Inventor j is said to be inventor i’s second degree
connection if

1. Inventor i and inventor j are not directly connected (wij = wji = 0), and

2. There exists an inventor m such that inventor m is directly connected to both inventor
i and inventor j (wmj, wjm > 0, wim, wmi > 0).

The intensity of the (indirect) relationship through inventor m between inventor i and in-
ventor j in this case is given by the multiplications of the intensities of the relationships
between inventor i and inventor m and inventor j and inventor m (wim · wmj and wjm · wmi,
respectively).

Building upon Definition 1, I can now generalize notion of collaboration intensity to
second-degree connections. Specifically, let w̄ji denote the intensity of the (direct or indirect)
relationship between inventor i and inventor j from inventor j’s perspective. In the case
where inventors i and j are directly connected, this weight equals the intensity of their direct
relationship, denoted as wji. However, if inventors i and j are each other’s second-degree
connections, these weights are determined by the sum of all intensities across all the inventors
who connect between them. Specifically, for all i and j it is given by,

w̄ji =

wji if wji > 0∑n
m=1wjm · wmi if wji = 0

7The assumption that information can be acquired only through first- or second-degree inventors simplifies
the notations and enhances the comparability with the empirical tests and the estimation conducted in the
following sections. It, by no means, restricts the validity of the propositions. In Appendix B, I present an
extension where I do not impose this assumption.

8This is usually referred to as a distance of two between inventor i and j.
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In Figure 2, inventor 1 and inventor 2 are directly connected, while inventor 3 is inventor
2’s second degree inventor, with inventor 1 connecting between them. The intensity of the
indirect relationship in this case is equal to w̄23 = 0.35 · 0.5 = 0.175 and of the direct
relationship is w̄21 = 0.5.

The total information held by inventor i is the result of a combination between their initial
knowledge and the information they acquire through first- or second-degree interactions with
other inventors. Formally,

Ii = ki +
n∑

j=1

w̄jikj ∀i (1)

where weighting the collaborators’ knowledge by w̄ji is meant to capture the idea that the
information inventor i can learn from inventor j is proportional to a measure of the depen-
dence between them. Intuitively, if inventor j spends only half of their time producing patents
with inventor i, it is unlikely that inventor i can learn everything that inventor j knows in
that time. Moreover, it implies that if inventor i and inventor j are only connected through
inventor m, it should be unlikely for inventor i and inventor j to gather the same amount
of information from inventor m, as inventor j has a direct access to them. Additionally, it
imposes the implicit assumption that information cannot be gathered from both a direct and
an indirect connection, and when inventors have both a direct and an indirect connections
to an inventor on the network, the information transfers only through the direct connection.
The idea is that a direct relationship provides superior access to information compared to an
indirect one. Consequently, inventors are more inclined to act on the direct link rather than
the indirect one.

2.1.3 Patent Production Function

Inventors produce patents in teams. Each inventor’s total output relies on their own indi-
vidual output, which is determined by their ability and the total information they hold, as
well as the output contributed by their direct connections. Inventor i’s output is, therefore,
given by

yi = αi + Ii ∀i (2)

Yi = yi +
∑
j ̸=i

wjiyj ∀i

where yi is inventor i’s individual contribution, and it can be though of as the ability to
produce solo-patents. Note the contribution of inventor i’s collaborators is weighted by the
time inventor j spends collaborating with inventor i, denoted as wji. It captures the idea
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that inventor j contributes more to the total output of inventors they spend more working
on patents with.

This production function reflects the substitution between different sources that drive
patent production. It emphasizes the tradeoff between the information inventors access
through the network and the direct benefit the inventor gains from co-patenting, which
comes in the form of the output contributed by their direct collaborators. This tradeoff will
be the main focus of the next subsection.

2.2 Two Period Model

In general, patents are produced in various geographical locations. As a consequence, inven-
tors may move around. In this part, I study the effect of a relocation on the total output of
the mover’s former collaborators in the eyes of the model. Specifically, the magnitude and
the direction of this effect will be contingent on the specifics of the connections between these
inventors, and on how their network changes in response to the relocation.

To start with, consider two time periods and two geographical locations. Let t = 1

represent the time before any relocation occurs, and t = 2 reflects the time after the relocation
has taken place. Assume that the weight matrix W is fixed across time periods. I impose this
assumption for compatibility with the empirical section where the intensity of the relationship
between the inventors is measured only prior to the relocation and not after, especially since
there are limitations in measuring based on what is observable.

Next, since the collaboration network can undergo changes between the two time periods, I
introduce new notations which capture the state of the network in each one of these periods.
Denote by G (t) ∈ {0, 1}n×n the undirected adjacency matrix at time t. The ij-th entry
represents the collaboration status between inventors i and j at time t, with the entry equal
to one if they co-patent, and zero otherwise. This relationship is reciprocal. Additionally,
let S (t) ∈ {0, 1}n×n be the undirected information exchange network at time t. This is
a symmetric matrix whose entries are equal to one whenever the inventors are engaged
in information sharing. In the initial period, information sharing occurs exclusively when
inventors co-patent.9 However, after the relocation, in period t = 2, inventors who previously
co-patented in t = 1 may cease their collaboration in period t = 2, and yet still engage in

9This assumption follows by the empirical limitations. In the data I cannot observe any relationship
between inventors that is not ties to co-patenting.
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information sharing. Formally,

gij (1) = 1 ⇐⇒ sij (1) = 1 ∀i, j

gij (2) = 1 =⇒ sij (2) = 1 ∀i, j

Lastly, Ii (t) is the level of information held by inventor i at time t, where the directed and
second degree connections are now measured based on the entries of the network S (t).10

2.2.1 Information Acquisition the Two Period Model

To accommodate some degree of continuity across the two periods, I impose the following
assumption:

Assumption 1. The information inventors acquire in the first period cannot be forgotten
and therefore, it is not subject to relearning.

This implies that inventor i begins period t = 2 with information level that is equal to
Ii (1), rather than ki, as it is at the beginning of period t = 1. Intuitively, once techniques
and ideas are acquired, they cannot be unlearned. Once learned, inventors can apply them
again without relearning. In particular, equation (1) becomes

Ii (1) = ki +
n∑

j=1

w̄jikj ∀i

Ii (2) = Ii (1) +
n∑

j=1

1 {w̄ji (2)− w̄ji (1) > 0} · [w̄ji (2)− w̄ji (1)] kj ∀i (3)

where w̄ji (t) corresponds to the indirect weight based on the links in the matrix S (t), which
are weighted by the matrix W.11 Note that the multiplication by the element 1 {w̄ji (2)− w̄ji (1) > 0}
imposes the restriction that information can only be acquired in the second period, and can-
not be lost.

10In the first period, the elements of the matrices S (1) and G (1) are equivalent to the indicators
1 {wij > 0}. Therefore, the direct and second degree connections on W, S (1) and G (1) are the same.
However, in the second period, since information sharing can take place even when the inventors do not
collaborate, it does not necessarily hold.

11Although the matrix W is fixed across the two time periods, the potential differences in the matrices
S (2) and S (1) can lead to differences in w̄ji (t) across the time periods, if new links are formed and/or old
links are severed.
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2.2.2 Patent Production in the Two Period Model

Production in both periods follows the same reasoning as in equation (2), with output de-
pending on both individual and scaled collaborative outputs. That is,

Yi (t) = yi (t) +
n∑

j=1

gji (t)wjiyj ∀i

yi (t) = αi (t) + Ii (t) ∀i

Define by ∆Yi = Yi (2) − Yi (1) the change in inventor i’s total output between the two
periods.

2.2.3 Predictions

Let inventor i and inventor j be two inventors who are listed on at least one joint patent at
time t = 1. And assume that inventor j relocates. In order to isolate the effect stemming
directly from alternations in the patenting relationship with inventor j, assume that any
change to inventor i’s network involve adjustments related directly to inventor j.12 To put
it differently, my assumption is that the only connection of inventor i that could potentially
change is the one with inventor j, and all other attributes, such as the abilities and information
held by inventor i’s other connections, remain constant across both time periods.

As a result of inventor j’s relocation, the relationship between inventor i and inventor j

can evolve in different ways, which will determine the sign of the effect.

Proposition 1. If, in period t = 2, inventor i and inventor j no longer collaborate or engage
in information exchange with one another (gji (2) = 0 and sji (2) = 0), then the effect of the
relocation on inventor i’s output is negative (∆Yi = 0). However, if information sharing
takes place, the effect can be strictly positive.

Proof. See Appendix A.
This Proposition states that, ex-ante, the effect on inventor i’s productivity is ambiguous.

If inventor i and inventor j break their collaboration and cease any communication, then
inventor i only bears the outputs costs to that are associated with the loss of a collaborator.
This loss is proportional to inventor j’s output in the first period.13 On the other hand,

12Empirically, I show that the number of inventors who use inventor j’s old or new connections is very
small, so I can abstract away from that in the model. However, I still address this possibility empirically.

13This alteration to inventor i’s network resembles that of a death shock caused by an inventor’s death.
The result in this proposition is consistent with results in previous studies (see, for example, Azoulay et al.
(2010) and Jaravel et al. (2018)) which utilize death shocks in innovative sectors to study the effect on the
survivors and find negative effects.
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the effect that is driven by exposure to a new informational network operates in an opposite
way to that of losing a collaborator. Therefore, as long as the information acquired through
inventor j is valuable enough, it can counteract the negative effect due to the loss of inventor
j’s output and lead to a positive sign.14

This proposition underscores the significance of information sharing. It asserts that,
in contrast to death shocks, the termination of collaboration between inventors does not
necessarily imply they stop engaging in information sharing. Hence, the discontinuation of
collaboration does not inevitably lead to a negative impact on the inventors who remain in the
original location after their collaborator relocates. The sign of effect hinges on the tradeoff
between the benefits from shared information and the potential cost of losing a collaborator.

The potential informational benefits depend on the identity of inventor j’s new connec-
tions after the move, as outlined in the next proposition.

Proposition 2. Denote by Ni (t) and Nj (t) the set of inventor i’s and inventor j’s col-
laborators at time t, respectively. Holding the collaboration and information status between
inventors i and j fixed, as well as the level of information inventor j gets access to after the
relocation, if

1. The number of inventors j collaborates with after the move is fixed across two scenarios(∣∣∣Ñj (2)
∣∣∣ = |Nj (2)|

)
, and

2. The number of new connections j makes that are not collaborators of inventor i prior
to the move is larger under one of the scenarios

(
Ñj (2)∖Ni (1) ⊆ Nj (2)∖Ni (1)

)
then, the size of the effect under Nj (2) is greater. In other words,

∆Yi (Nj (2)) ≥ ∆Yi

(
Ñj (2)

)
With strict inequality as long as sji (2) = 1.

Proof. See Appendix A.
This proposition states that, holding everything fixed but the connections between inven-

tor j’s new collaborators and inventor i’s collaborators, a greater overlap between inventor
i’s collaborators and inventor j’s new collaborators leads to a lower effect on inventor i’s
output. The intuition relies on Assumption 1, which posits that inventor i cannot relearn
information they already possess. Consequently, when inventor j relocates, inventor i and
their immediate connections remain connected, meaning that inventor i doesn’t acquire new

14It is also important to note that if the inventors maintain their collaborative links, inventor i benefits
from a weakly higher level of information and a weakly stronger collaborator. In that case, both effects
operate in the same direction, leading to a positive effect.
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information through inventor j’s new connections, provided that these connections are formed
with inventor i’s existing connections. However, in the scenario described in the proposition,
as there is no impact on inventor j’s individual output, when inventor j forms connections
with inventors not directly linked to inventor i, inventor i gathers additional information.
And this results in a higher output. This emphasizes that it is not just the act of sharing
information that results in the potentially positive effect, but rather the ability to access new
and previously unknown information.

Conversely, if a change in the output is associated with a common shock following, for
example, a significant success in a patent on which both inventor j and inventor i are listed,
then effect would be synchronous with the timing of the relocation but would not be trig-
gered by any modifications in the network. This situation is equivalent to a shock affecting
the innate abilities of both inventor i and inventor j, denoted as αi and αj, respectively.
Consequently, it would not hinge on the identity of the inventors in the destination location,
as Proposition 2 suggests.

Proposition 3. Let αi (t) , αj (t) be the innate abilities of inventors i and j at time t, respec-
tively. And assume that αi (2) > αi (1) and αj (2) > αj (1). If the conditions in Proposition
2 hold, and the effect is driven solely by the changes in the inventors innate ability, then

∆Yi (Nj (2))−∆Yi

(
Ñj (2)

)
= 0

That is, the effect does not depend on the characteristics of the network inventor i gets access
to.

Proof. See Appendix A.
The assumption that the effect is solely driven by a shock to inventors’ abilities implies

that the same amount of information is acquired in both scenarios. In that case, since the
abilities are also equal across these cases, the effect should be the same.

Note that this proposition is not limited to that specific scenario, and a similar behavior
should take place regardless of the which variation in the network I utilize.15

Another important feature of the collaboration network is the strength of the connec-
tions between the inventors. Given that both the amount of information acquired and the
output produced through the network are scaled by these weights, it plays a crucial role in
determining the magnitude of the effect.

Proposition 4. Let w̃ji > wji > 0 be two weights. Assuming the status of collaboration
and the status of information sharing remain constant in the second period under these

15In the empirical section, I will use different variations such as the gender or distance of the move, which
I do not model here.
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two weights, the size of the effect under w̃ji is greater in absolute terms. In other words,
|∆Yi (w̃ji)| > |∆Yi (wji)|.

Proof. See Appendix A.
This proposition highlights that a more intense collaborative relationship between inven-

tor j and inventor i leads to a more pronounced effect, measured in absolute terms. This
follows since the intensity of the connection between the inventors scales the information
gains and also the benefits or costs associated with continued collaboration or severance of
the links. Therefore, if the difference between the information gained and the collaboration
effect is negative, multiplying this difference by a larger number amplifies the negative ef-
fect. Similarly, if the overall effect is positive, scaling it by a larger number magnifies its
magnitude.

3 Data and Descriptive Statistics

The dataset used for conducting the analysis is the product of a combination of two data
sources, which together allow me to follow the innovative activity of inventors, as well as
their locations within different economic areas in the United States over time. The first is
the patent data from the US Patent and Trademark Office (USPTO). The second is provided
by Revelio Labs, and it includes public employment information and other characteristics
available on online professional profiles. The merge between these datasets opens up the
opportunity to track inventors’ employment history, including, but not limited to the firm
they are employed at, the physical location, and the role they are taking within the structure
of the firm.

3.1 Patent Data

The patent data covers all the U.S. patents granted between 1976 and 2021 and it was
downloaded directly from PatentsView.16 For each patent, this dataset includes information
on the dates at which it was applied and granted, the individuals who were part of the
team working on the patent, the firm to which the patent was assigned, the CPC class and

16According to their website, PatentsView is “a collaboration between the USPTO, American Institutes
for Research (AIR), University of Massachusetts Amherst, New York University, University of California,
Berkeley, Twin Arch Technologies, and Periscopic which started in 2012.” It allows a bulk data download of
raw as well as disambiguated, or processed data on patents and applications applied to with the USPTO.
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subclasses, as well as backward and forward citations.17,18 Furthermore, the city and the
state the inventor resides in at the time of the application are also part of this dataset.19

The raw data initially lacks consistent identifiers for patent inventors, making it challeng-
ing to accurately track and analyze inventor information. However, PatentsView provides
a valuable dataset that has undergone a disambiguation process. This process involves as-
signing similarity scores to inventors using various algorithms, allowing for a reliable and
standardized inventor identification. Additionally, PatentsView follows a similar procedure
for assignees, ensuring that a disambiguated assignee information is consistently represented
in the dataset. Using this dataset, I can create a panel of inventors over time, where each
year includes information on all the granted patents the inventor applied for.

Since I follow relocations within the United States, I do not include any inventor whose
home address was listed outside of the United States for any of the years 1976-2022.20 There
are about 1.2 million unique inventors in the final dataset.

3.2 Online Professional Profiles Data

This is an individual level database I received access to through a company named Revelio
Labs. It is comprised of about 1.25B professional profiles and it provides their entire employ-
ment and education history as posted online by the end of 2022. The information in these
profiles is made available and published by the individuals themselves. It includes, but is not
limited to, the firm they are employed in, the role they take in the firm, and the institute
at which they acquired education at that time. In general, the information is supplied in a
panel structure such that for each firm-position combination, there exists a starting date and
an ending date.

This is the universe of global professional profiles, and as such it covers all employees who
have such a profile.21

17CPC or Cooperative Patent Classification is a patent classification system. It was developed in a collab-
oration between the USPTO and the EPO (European Patent Office) in the goal of constructing a consistent
classification system across these two entities. The CPC is in use since 2013, but older patents were given
this classification retro-actively. It has five hierarchies, where each layer in the hierarchy refines the subject
to which the invention relates to.

18Backward citations are usually referred to as the prior work a given patent cites as a relevant reference.
While forward citations are the citations a given patent receives.

19This is the inventor’s home address and not the location of the firm the patent is assigned too. The
reason one would prefer to focus on the inventor’s residence location is that the listed address for the assignee
is usually the location of the headquarters, which might not be the the actual branch the inventor is employed
at. Since I am interested in the physical location the inventor works at, it makes more sense to use their
home address due to the likelihood of proximity between the two.

20For the purpose of this paper, and based on the the geographical units I utilize, I do not include the
American territories of the United States.

21Thinking about the population as a whole. Since this data is collected from online professional profiles,
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3.3 Data Construction

The ultimate goal is to create a panel dataset that encompasses yearly entries, providing
crucial information on an inventor’s location, employer, and patenting behavior. To achieve
this, a merger between the patent data and Revelio Labs data is essential. This linking
process is accomplished by utilizing the inventor’s home address provided during the patent
application. Focusing on inventors who applied for a patent for the first time after 1990,
and considering online profiles became available around 2008, the linking procedure involves
using the name of the inventor, the state they lived in, and the name of the assignee listed
on the application.22 The linking procedure is described in full details in Appendix C. This
procedure results in approximately 300,000 successful matches, which represents about 30%
of all US-based inventors who have exclusively lived within the US and have never obtained
a patent before 1990.

Focusing on inventors applying for the first time after 1990 allows me to deal with the
potential bias involved with the inventor’s decision on which old employment information to
include, as well whether to even open such a professional profile account. Since such profiles
are usually more beneficial for individuals currently part of the labor force, it is less likely
that a retiree or an individual close to retirement will have such an account. Building on
Kaltenberg, Jaffe and Lachman (2023) who show an empirical evidence suggesting that most
inventors apply for their first patent in their late 20s or early 30s, focusing on 1990 seems
reasonable.23

Ultimately, the merged dataset effectively tracks inventors over time, providing annual
records of their employers, job position, and the specific city and state of the establishment
where they work. Additionally, the dataset includes valuable information on their patenting
activity, such as the number of patents and citations received. The inventor’s patenting
behavior offers insights into both the quantity and quality of their innovative contributions.
The number of patents filed in a given year serves as a measure of quantity, while the
number of citations received indicates the quality of the patents. However, it is essential to
address potential biases and inaccuracies in measuring patent citations, as highlighted by
Hall et al. (2001) and Lerner and Seru (2021). They pointed out that a simple citation count

it is possible that the data is being drawn from a non-representative sample of the population as a whole.
However, as this paper focuses on high-skilled workers, with a very specific occupation – inventors – this
issue should be less of a problem. To support this argument, in Appendix E, I repeat the analysis on the full
sample of inventors and in D on an administrative data on German inventors.

22Although online profiles were introduced around 2008, it is up to the individual to decided on the
employment history they feed in. An individual can decide to use of their employment history, dating back
as far as possible, and they can also decide to focus on the more recent past.

23These inventors will be in their late 40s to 50s by the time online professional profiles became available.
Therefore, it is likely that these individuals will still find it beneficial to have an online account.
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may be misleading due to changes in innovative activity over time and across CPC classes.
To mitigate these issues, I adopt an adjusted measure for patent citations. This involves
normalizing each patent’s citation count by the average citation count for all other granted
patents in the same year and CPC class. For the citation year, I refer to the application year
of the cited patent.24

The inventor’s location and firm are defined based on their employment history, ensuring
accurate and reliable information in the dataset. During the calendar year, if an inventor
changes employers or relocates, the employer and location information for each entry in the
panel dataset are determined based on the maximum number of days spent in a specific year.
This means that the employer entry will reflect the firm where the inventor was employed for
the greatest number of days throughout the year, where ties are broken randomly. Similarly,
the location entry will be based on the place where the inventor spent the majority of their
time during that year, where, again, ties are broken randomly. This approach ensures that
the panel dataset provides the most accurate and representative information regarding the
inventor’s employer and location for each year.

Appendix Table C.1 presents summary statistics related to patent activity and demo-
graphics for the final sample, comparing it with the full sample of inventors. In both sets
of samples, the distribution of innovation activity is skewed towards higher values. This
characteristic is evident in both the quantity and quality aspects of innovation. Moreover,
a marginal distinction exists between the two samples, with inventors in the linked sample
showcasing slightly higher average productivity than their counterparts in the full sample.
This discrepancy could potentially be attributed to the fact that the linking tends to favor
inventors with more observations. This is a result of the linking process, which primarily
considers inventors with higher accuracy rate.25

3.4 Movers, Left Behinds and Sample Construction

Following Moretti (2021), a move in this setting will be defined as a relocation between
the U.S. Bureau of Economic Analysis’ (BEA) “economic areas.” These “economic areas”
are determined by the patterns of labor commuting, effectively defining local labor markets.
They consist one or multiple MSAs, which serve as hubs of economic activity, along with

24The reference year is the year the patents were applied for. That is, the average number of citation is
calculated relative to the application date rather than the grant date.

25The scenario where the patent’s assignee matches the employing firm of all inventors involved isn’t
universally applicable. Due to this, inventors associated with patents where the listed assignee differs from
their employing firm won’t be considered for matching. Conversely, if their patent history includes multiple
instances, some of which under their employing firm, the likelihood of successfully linking them with their
online profile increases.
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the adjoining counties that share economic interdependencies with them. Therefore, the
distinction between “economic areas” is more pronounced, making it less likely for spillovers
to naturally occur between these locations.

The United States comprises 179 economic areas that span the entire country, which can
vary in size depending on their location. Notably, in larger regions like New York, Boston,
or San Francisco, the economic areas tend to be larger than their corresponding MSAs as
illustrated in Figure 3 (Johnson, 2004).

Figure 3: Economic Areas Examples: San Francisco and San Diego

Notes: This map illustrates two economic areas: San Francisco (indicated by a red outline) and San Diego
(indicated by a green outline) within the state of California. Notably, in smaller cities like San Diego, the
MSA (depicted in green) and the economic area (outlined in darker green) coincide. However, in larger cities
such as San Francisco, the corresponding MSA (colored in red) is smaller than the corresponding economic
area, delineated in bordeaux.

In each inventor-year observation, I determine the economic area by considering the lo-
cation where the inventor states their professional work is conducted. Unlike the address
provided in patent applications, which often pertains to the corporate headquarters, the city
and state reported by the inventor on their professional profiles likely accurately represent the
physical location of the office where they work. This method ensures that the economic area
assigned to each inventor reflects their actual workplace location, providing a more precise
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and representative measure of the network of inventors they gain access to.
With the information regarding the inventors’ locations over time, I identify a group of

movers as those who have relocated between economic areas, and I designate the year of
their move as the first year in their new location. By examining the employment history
provided in professional profiles, I can identify an inventor as a mover even if they have not
filed any patents in that specific year or at any point afterward, which is an advantage in my
setting.26 Overall, I identify 49,904 movers who moved at least once. If an inventor moved
more than once, I only consider the first move.27 Moreover, as the network of co-inventors is
an important part of the analysis, I only consider moves after the first patent. If the inventor
moved prior to the first patent, I ignore this move.

Table 1 reports the descriptive statistics of the moves. It shows that moves tend to
be associated with a more productive destination, as measured by different specification.
Where cluster size in a given year is defined in Moretti (2021) as the number of inventors
in an economic area X CPC class pair, excluding the mover, as a share of all inventors in
that CPC class and year. Specifically, it shows that about 75 percent of the inventors are
relocating to an areas that is associated with a higher productivity. Moreover, the mover
tends to patent in the modal technology class in this location, as defined by the CPC class,
with more than 50 percent satisfying this condition.

In accordance with Jaravel et al. (2018), I establish a group of “placebo movers.” These
placebo movers consist of inventors who appear similar to those who actually relocated but,
in reality, did not change their location and were not co-inventors of any of the movers.
To achieve this, I implement an exact matching procedure, matching the movers based on
specific criteria: the cumulative number of patent applications at the time of the move, the
year of the first patent, the time of the move, and the CPC class of the last patent before
the move. In case of ties, the matched inventors is picked randomly. Accounting for the
total number of applications inventors applied for prior to the move allows me to control for
some degree of productivity, while considering the year of the first patent serves as a measure
of experience in patenting. Lastly, by utilizing matching based on the CPC class of the
final patent before relocation enables me to mitigate potential biases that could arise from
patenting activities associated with specific technological categories, or industry shocks. For
instance, consider the IT revolution that unfolded in the early 2000s. If inventors specializing
in IT-related domains were more inclined to relocate across economic areas, it might create
a situation where the inventors left behind appear more productive due to the influence of

26If I had solely relied on patent data, this identification would not have been feasible. The patent data
only includes observations on inventors when they apply for a patent, and as most inventors do not file for
patents every year, this would have likely resulted in a delayed identification of the inventor’s move year.

27As a robustness check, I repeat the analysis while including only inventors who relocated only once.
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Table 1: Descriptive Statistics on Moves

Move Associated with a More Productive Location by
Number of Patents in Location (%) 51.78
Weighted Number of Patents by Citations in Location (%) 51.85
Number of Patents in Location X Technology Class (%) 75.15
Weighted Number of Patents by Citations in Location X Technology 75.18
Number of Inventors in Location X Technology Class (%) 74.97
Cluster Size (%) 74.97

Patent in the Same Technology Class (%) 53.88
Patent in the Same Technology Class in the Origin Location (%) 57.09
Patent in the Same Technology Class in the Destination Location (%) 57.17
Moves within the Same Firm (%) 17.55
Continue Patenting after the Move (%) 52.84
Avg. Number of Patents at Time of Move (#) 0.72
Avg. Stock of Citations at Time of Move (#) 1.03
Avergae Distance of the Move (Miles) 980.59

Notes: This table includes information about the moves. It shows the percent of moves that
are associated with a more productive destination, based on different measures of productivity,
as well as, whether the mover tends to patent in the technology classes that are associated
with this location.

this technological shift, rather than their connection to the mover.
Ultimately, I successfully find an exact match for 43,123 movers, accounting for roughly

87 percent of the total movers I identified in my dataset. In Table 2, I present the summary
statistics of the real and placebo movers’ characteristics at the time of their move. The
real and placebo movers are perfectly balanced in terms of their first year of patenting,
cumulative number of applications, year of the move, and CPC class, as per the matching
procedure construction. According to the table, at the time of the move, real and placebo
movers have applied for 2.63 patents on average, that were eventually granted. The average
number of years between the move and the first patent is 5, while the average year of the move
is 2012. Additionally, despite not being directly matched on these characteristics, the real and
placebo movers also exhibit balance concerning the number of adjusted citations, averaging
2.75 for the real movers and 2.58 for the placebo mover, and gender distribution, with an
average of 86 percent male among the real movers and also the placebo movers. Overall, the
table demonstrates that both groups are also evenly balanced in various characteristics that
encapsulate their innovation-related activities. This further strengthens the credibility of the
matching process, a crucial factor in deriving accurate insights from the study’s findings.
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Table 2: Summary Statistics on Real and Placebo Movers

Real Movers Placebo Movers

Mean Median Std. Dev # Obs. Mean Median Std. Dev # Obs.

First Patent Year 2007 2008 9 43,123 2007 2008 9 43,123
Move Year 2012 2014 8 43,123 2012 2014 8 43,123
Patent Stock 2.63 1.00 3.12 43,123 2.63 1.00 3.12 43,123
Average Number of Patents Per Year 0.70 0.50 0.64 43,123 0.70 0.50 0.64 43,123
Adjusted Citations Stock 3.75 0.93 12.43 43,123 3.54 0.89 13.99 43,123
Average Adjusted Citations Per-Year 1.01 0.23 3.68 43,123 1.00 0.22 7.76 43,123
Male 0.86 1.00 0.34 38,991 0.85 1.00 0.36 39,471

Notes: This table presents summary statistics for both the real movers and the matched placebo group
that I constructed. The variables are assessed at the time of the real or placebo move and encompass
both the total count and the average values over the period before the move. What becomes evident
from this table is that, even among variables that were not specifically matched, the real movers and the
placebo group appear to be evenly balanced.

Next, I construct the co-inventor network for both real and placebo movers. This group
comprises any inventor who has previously collaborated on a patent with either a real or
placebo mover before their respective moves. These inventors are referred to as real and
placebo "stayers," respectively. To ensure a reliable analysis, I exclude inventors who formerly
co-patented with more than one real or placebo mover, leaving me with 23,553 real stayers
and 15,401 placebo stayers. The summary statistics for these groups are presented in Table
3, which demonstrates the balance between these groups in terms of their patenting activity
and characteristics.

On average, both real stayers and placebo stayers indicate their initial job on their online
professional profile as 1997. Their first patent, on average, is applied for about 10 years later,
and they experience the mover of their collaborates, on average, in 2015. Real stayers apply
for an average of 6.54 patents before the move, with a cumulative total of 6.97 adjusted
citations. In contrast, placebo stayers apply for an average of 7.10 patents prior to the
move, accompanied by an average cumulative total of 7.59 adjusted citations. They are also
balanced in term of gender, with 84 percent of real stayers and 85 percent of placebo stayers
being male.

Remarkably, this balance is achieved despite not conducting the matching procedure at
the stayers level. This implies that through an exact matching procedure, which was aimed
to establish a foundation for identifying causal effects, I created a comparable control group
which will help me to mitigate any biases that could arise from patenting activities and the
timing of inventors’ relocations. Through CPC class matching, I ensure that the placebo
movers are patenting within the same technology category as the real movers. Consequently,
any effect driven solely by the patenting category of the movers should be effectively neu-
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tralized, as the placebo stayers will be exposed to it in a manner similar to the real stayers.

Table 3: Summary Statistics Real and Placebo Left Behind Pre-Move

Real Left Behind Placebo Left Behind

Mean Median Std. Dev # Obs. Mean Median Std. Dev # Obs.

First Year in Sample 1997 1998 10 23,553 1997 1998 10 15,401
First Patent Year 2007 2009 9 23,553 2007 2009 9 15,401
Move Year Mover 2015 2016 6 23,553 2015 2016 6 15,401
Patents Stock 6.54 3.00 11.66 23,553 7.10 3.00 13.41 15,401
Average Number of Patents Per Year 0.40 0.20 0.71 23,553 0.42 0.20 0.73 15,401
Adujsted Citations Stock 5.77 2.27 12.67 23,553 6.32 2.19 14.54 15,401
Average Adujsted Citations 0.36 0.13 0.79 23,553 0.38 0.13 0.88 15,401
Male 0.84 1.00 0.36 21,457 0.85 1.00 0.35 14,036

Notes: The information presented in this table offers summary statistics for both the real stayers and the
placebo stayers group. An inventor is considered to be a “stayer” if they have collaborated with an inventor
who eventually relocates. As such, the real (placebo) stayers are listed on a patent with real (placebo)
movers before their respective moves. The variables are examined at the time of the real (placebo) move
and cover both the cumulative count and the average values throughout the period prior to the move.
Notably, it’s important to observe that although I didn’t specifically match characteristics of the stayers,
the dataset seems to be well-balanced.

4 The Productivity of Left Behind Inventors

In this section, I outline the methodology utilized to estimate the average treatment effect
of an inventor’s relocation on the innovation activity of their co-inventors who remain in the
original location and do not move themselves. This effect is identified through a difference-
in-differences research design, where the control group consists of co-inventors who did not
experience the relocation of their collaborators but share similar characteristics with the
treatment group, as detailed in Section 3. By selecting the co-inventors in this manner, I
address the potential concern that co-inventors who experience a move of their peers might be
substantially different than those who did not experience a relocation of their collaborators.
This approach helps mitigate any bias that could arise from productivity disparities between
the two groups, enabling a more reliable analysis of the effects of the inventor’s move on their
co-inventors’ productivity.

4.1 Dynamic Effects

Building on the identification strategy in Jaravel et al. (2018), I employ OLS regressions
with a full set of leads and lags around the inventor’s move. This approach enables me to
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study how the relocation influences the co-inventor’s productivity over time. Furthermore,
the methodology serves as a means to validate the research design by testing whether there is
any observable effect of being left behind before the actual relocation event takes place, and
by that addressing some of the concerns regarding a potential common shock. Specifically,
using the constructed treatment and control group, I stack the moving events together such
that the time index t represents the time relative to the move, which takes place at time
t = 0, thereby addressing the concerns about estimation of pre-trends raised by Roth (2022).
I then estimate the following OLS regression:

Yit =
9∑

k=−9

βReal
k 1{LReal

it =k} +
9∑

k=−9

βAll
1{LAll

it =k} + αi + αt + εit (4)

where LReal
it are the leads and lags around the time of the relocation for the real stayers.

Similarly, LAll
it are the leads and lags around the time of the relocation for both real and

placebo stayers.
{
βReal
k

}9

k=−9
and

{
βAll
k

}9

k=−9
are the predictive effects associated with the

respective leads and lags, where k denotes the time relative to the move. I also include
individual (αi) and year (αt) fixed effects.28 To account for a possible serial correlation
between inventors who are associated with the same mover, I cluster the standard errors at
the mover level as in Jaravel et al. (2018).

If the move is as good as an exogenous variation, the coefficients
{
βReal
k

}9

k=−9
identify

the causal effect of experiencing a relocation of a co-inventor k years relative to the year of
the move. If being experiencing the relocation of a co-inventor results in an increase in the
inventor’s productivity k years relative to the move, βReal

k should be positive. Conversely, if it
negatively affects the inventor’s productivity, the coefficient should be negative, and if there
is no effect, it would be zero. However, an identification concerns that needs to be addressed
is selection bias. If the inventors who experienced the relocation of their co-inventor display,
on average, higher productivity compared to the overall population of inventors, then the
estimated effect might not reflect true causality. To mitigate this issue, I use a control group
of inventors who share similarities with those experiencing a relocation of a co-inventor but
did not experience that themselves. In the analysis below, I demonstrate that there is no
evidence of statistically significant pre-trends, effectively addressing this concern. Specifically,
the results indicate that the lag terms βReal

−9 to βReal
−1 are not statistically significant before

the move occurs. This finding suggests that prior to the move, the inventor’s productivity
is not influenced by the future move, thus supporting the valid causal interpretation of the
estimates.

28These fixed effect also include the time elapsed since the first patent, i.e., experience in the patenting
innovation.
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In Figure 4, I report the point estimates derived from regression equation (4). No pre-
trends are reported and the point estimates seem to be downward sloping. It also reveals that
the enhancement in the productivity of inventors who experienced the relocation of their co-
inventors, relative to the placebo group, exhibits a positive effect. This improvement becomes
statistically significant approximately three years after the initial event when considering
the annual number of patents and the weighted metric of annual number of patents, termed
adjusted citations. Also, although the effect weakly increases over time, it appears to stagnate
around six years after the move.

This outcome aligns logically with the notion that there is a time lag involved. It requires
some duration for the relocating inventor to amass new knowledge and subsequently transmit
it to their former collaborators in the origin location. Moreover, the delayed adjustment in
citations can be attributed to the usual pattern where citations trail behind patents.29

4.2 Baseline Regression

As a way of summarizing the results, I utilize a second specification that directly compares
the pre-period and post-period to estimate the average treatment effect of the move, in-
stead of examining the effect over time. In this alternative approach, the dummy variables
PostMoveReal

it and PostMoveAll
it turn one after the time of the real or placebo move, respec-

tively. This allows for a more concise assessment of the move’s impact without focusing on
the dynamic changes over time. This specification is given by:

Yit = βRealPostMoveReal
it + βAllPostMoveAll

it + αi + αt + εit (5)

I also include individual and fixed effects, as before. And cluster the standard errors at the
mover level.

Table 4 presents the outcomes of the regression analyses. The results indicate a positive
and statistically significant impact on both the annual number of patents and the annual
number of citations. In column (1), the coefficient βReal equals 0.045 and is statistical signif-
icance. This signifies that in comparison to the placebo stayers, those who truly experienced
the relocation of their co-inventor tend to exhibit a higher productivity. When compared
to the average annual patents post mean for the control group (0.5), this translates to ap-
proximately a 9 percent rise in the number of patents per year compared to the control

29I use the date of patent application, not the date of patent granting. So while it’s generally observed
that patent application timing aligns closely with R&D (as indicated by studies such as Griliches (1998) and
Griss (1993)), my findings do not conflict with this notion, because the mover should logically not engage in
R&D in the new location before the move takes place. Consequently, both sets of results can indeed remain
valid, and patent and citation counts can take time to respond.
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Figure 4: Dynamic Effects
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(b) Annual Number of Adjusted Citations
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Notes: This plot presents the effect of an inventor’s move on their collaborators’ productivity.
The vertical lines represents a 95% confidence interval, while standard errors are clusters at the
mover level. The dependent variables are the annual number of patents and the annual number of
adjusted citations, which are defined in Section 3.

group.
Similarly, as seen in column (2), the coefficient βReal stands at 0.051 and is highly statis-
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tically significant. This suggests that, relative to the placebo group of inventors, real stayers
generate a higher annual number of weighted-patents on average, as implied by the number
of annual adjusted citations. In percentage terms, this signifies more than 15 percent rise in
the annual number of adjusted citations compared to the placebo stayers group.

Table 4: Baseline Regression Results

(1) (2)
Annual Number of

Patents
Annual Number of
Adjusted Citations

PostMoveReal 0.045∗∗ 0.051∗∗∗
(0.019) (0.018)

Control Post Mean 0.5 0.34
Percentage Change +8.95% +14.92%

Observations 555815 555815
Individual FE Yes Yes
Year FE Yes Yes
Experience FE Yes Yes

Notes: The information presented in this table presents the results
from regression equation (5). The unit of analysis in these regressions
is inventor-year. The dependent variable in column (1) is the number of
patents per year and in column (2) is the number of adjusted citations
per year, as defined in Section 3. Standard errors are clustered at the
mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

A second identification concern relates to a common shock, involving unobserved time-
varying productivity shocks at the mover level that could lead to more productive stayers.
If the mover’s opportunity to relocate is influenced by their prior work and success, and the
stayer is associated with any of these patents, there is a possibility that the stayer, despite
not moving themselves, experiences increased productivity due to the success of these patents
and not directly due to the move. This increased productivity may be linked to factors like
greater ease in obtaining research grants, which allows them to access better equipment and
additional resources. Consequently, the observed effect might be driven by the joint previous
success rather than the mere connection to someone who moved. To address this concern,
I conduct a series of heterogeneity tests to account for potential confounding factors and
ensure the validity of the estimates in the next section.
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4.3 Additional Results and Robustness Checks

Within vs. Across Firm Moves. Although inventors within the same company are typ-
ically encouraged to collaborate on patents, it is conceivable that when a relocation involves
switching employers, these inventors may no longer have the opportunity to co-patent with
each other. If this scenario holds true, it could create obstacles to collaboration and, po-
tentially, hinder the exchange of information. To address this possibility, I have confirmed
that my results are robust to within and across firm moves, and the results are presented in
Appendix Table F.1.

Bad vs. Good Moves. Inventors relocate to various locations, and the characteristics of
the location they move to might generate consequences for their co-inventors who remain in
the origin location. Research indicates that relocating to a bigger innovation cluster leads to
increase in the productivity of the inventor making the move (Moretti, 2021). Building upon
this finding, I show that when the mover relocates to a bigger innovation cluster, defined by
a higher concentration of inventors patenting in the same model CPC class, the effect of the
productivity of those who stay is larger in a statistically significant way. This implies that
the effect is contingent on the nature of the relocation and whether it provides opportunities
for heightened patenting activity. The results are presented in Appendix Table F.3.

Additional Robustness Checks. In Appendix F, I report additional robustness checks
showing that the results do not depend on the type of firm the inventors move to, and are
not driven by movers who relocated more than once.

5 Mechanism: New Information as the Driving Force

In this section, I show that the long-lasting positive effect on the productivity of the mover’s
co-inventors is a result of the opportunities created by the mover for the stayers to access
new information. First, I rule out that the effect is driven by a common shock, such as access
to more resources. Second, I show that the effect is not solely driven by cases where the
stayers substitute the mover for their associated mover’s former collaborators. That is, it
is not driven by having more opportunities to collaborate with the former collaborators of
the mover. Third, I demonstrate that the effect is primarily attributed to the acquisition of
new information, rather than information in general. I show that the stayers cite patents
produced in the destination location more extensively, and evidence on network expansion
into the destination location, after the move. I further report that when the mover switches
to a different CPC class, the stayers are more likely to follow them. I proceed by highlighting
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the asymmetric nature of this effect, particularly regarding inventors who shared a history of
extensive collaboration with the mover prior to the relocation. As anticipated, this subgroup
experiences a more pronounced effect, owing to the potential likelihood of maintaining some
form of relationship in these cases. I conclude by showing two facts: first, I show that the
effect remains positive even when I exclude patents produced in collaboration with the mover,
indicating that stayers acquire skills that contribute to their independent work. Second, I
show that the effect is predominantly prevalent in cases where the mover relocates to a
location where the stayer has no prior collaborators.

5.1 Ruling Out the Common Shock Reasoning

Heterogeneity by Sex Differences. The research design I employ, while addressing some
potential bias, doesn’t completely eliminate the common shock concern. This concern arises
when the effect is influenced by individual-level changes over time, such as access to more
resources. For instance, these could be resources that were previously occupied by the mover
or those resulting from a successful patenting activity for which the mover was "rewarded"
with a relocation opportunity. To address this concern I leverage patterns that common
shocks can not produce. I do so by showing that the size of the effect depends on similarities
between the mover and the stayers that are not thought to be correlated with success, but
rather are similar in nature to homophily.30

The findings presented in Table 5 report differential effects which are contingent on shared
characteristics between the mover and the stayer. It is evident that when the mover and the
stayers are of the same sex, the effect is positive and statistically significant. This effect
implies that compared to the placebo stayers, the real stayers experience an average of about
12 percent increase in the annual number of patents and almost 17 percent increase in the
annual number of adjusted citations. On the other hand, when considering the cases where
the mover and the stayer have opposite sexes, the effect becomes negative and statistically
insignificant. I can reject that the coefficients are the same at the 10 percent level.31

These results dispel concerns related to common shocks, as there is no basis to assume
that a common shock would disproportionately impact inventors based on both their own
sex and that of their respective movers. If the effects were exclusively driven by a common

30An extensive body of literature has emphasized the significance of homophily, a concept characterized by
individuals forming relationships with others who share similar attributes. Numerous studies underscore the
role of homophily in forging robust connections (see McPherson, Smith-Lovin and Cook (2001) for a survey
of the literature in sociology). See also Currarini, Jackson and Pin (2009), Currarini, Jackson and Pin (2010)
and Bramoullé, Currarini, Jackson, Pin and Rogers (2012) who model the origins of homophily.

31These outcomes align with the findings in Cullen and Perez-Truglia (2023) which indicate that positive
outcomes are observed when men interact with men, but no similar effect is found for women interacting
with women.
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Table 5: Heterogeneity by Sex Differences

Same Sex Opposite Sex

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.059∗∗∗ 0.058∗∗∗ -0.011 0.020
(0.022) (0.021) (0.037) (0.029)

Control Post Mean 0.501 0.349 0.496 0.304
Percentage Change +11.72% +16.7% -2.28% +6.42%
P-Value H0: Diff. = 0 0.09 0.26

Observations 364681 364681 109289 109289
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) on two
different samples. Columns (1) and (2) correspond to cases where the mover and the left behind are
of the same sex, and columns (3) and (4) cover the cases where the mover and the left behind are of
opposite sexes. The unit of analysis in these regressions is still inventor-year. The dependent variable
in columns (1) and (3) is the number of patents per year and in columns (2) and (4) is the number of
adjusted citations per year, as defined in Section 3. Standard errors are clustered at the mover level. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

shock, the logical expectation would be for the results to remain consistent across all sex
combinations between the mover and the stayer, as Proposition 3 suggests. However, the
findings in Table 5 demonstrate that this is not the scenario.

I find qualitatively similar results when conditioning on the race similarities between the
mover and the stayer. I report these results in Appendix Table F.4.

Heterogeneity by the Distance of the Move. Another evidence that the effect is not
driven by a common shock comes in the form of the asymmetric effect of the distance between
the mover and the stayer after the move.32

Specifically, I calculate the distance between the actual mover and the real stayer by
utilizing the location coordinates of the city where the inventor’s workplace is situated.33 It
is defined as the distance between the mover’s destination and the location of the stayer. For
the placebo mover, I impose the same distance between the origin and the destination of the

32It corresponds to the geographical distance between the mover’s initial location (and thus the location
of the stayer) and the mover’s new destination. In simpler terms, it represents the spatial gap between the
mover and the stayer subsequent to the relocation.

33The coordinates correspond to the nearest city listed by the inventor as their workplace location. These
coordinates indicate a random location within that city, and are persistent across cities. These coordinated
align with the coordinates provided by Google Maps.
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mover they match to.
The outcomes presented in Table 6 outline the estimation findings obtained by splitting

the dataset based on the distance the mover travels in their relocation. The threshold for
determining the distance between the mover and the left behind is set at the 50th percentile
of the distance distribution, which is equivalent to 714 miles.34

Table 6: The Heterogeneity by Distance from the Mover

Short Distance (Bottom 50%) Long Distance (Top 50%)

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.029 0.027 0.061∗∗∗ 0.073∗∗∗
(0.033) (0.028) (0.020) (0.021)

Control Post Mean 0.519 0.348 0.481 0.333
Percentage Change +5.5% +7.89% +12.68% +21.98%
P-Value H0: Diff. = 0 0.398 0.195

Observations 279200 279200 276615 276615
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) applied
to two distinct subsets of data. The first subset corresponds to left behind inventors who are located in
a closer proximity to their respective mover, and the second corresponds to left behind inventors who are
located at a greater distance form their respective mover. Close proximity is defined as distance that is
shorter than 714 mile (1149 km). The distance between the placebo left behind and placebo mover is
defined to be equal to the distance between the real inventor and the real left behind they are matched to.
Columns (1) and (2) pertain to scenarios where the left behind and the mover are close to each other, and
columns (3) and (4) delve into cases where they are located at a greater distance. The outcome variable
in columns (1) and (3) is the number of patents per year, while columns (2) and (4) utilize the number of
adjusted citations per year, as elaborated in Section 3. Standard errors are clustered at the mover level. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The table indicates that in this scenario, the significance of network novelty outweighs
physical proximity. The effect is substantial and statistically significant, especially when the
inventor relocates to a significantly more distant location. It reveals that in comparison to
the placebo stayers, real stayers experience an about 13 percent increase in their annual num-
ber of patents and a 22 percent increase in their annual number of adjusted citations post
move.35 This result might seem to stand in a contradiction to the extensive research that

34For a better understanding, consider the following comparisons: the distance between Boston and Detroit
spans 613 miles, while Boston to Chicago covers 851 miles. Boston to New York is a distance of 191 miles,
whereas Boston to San Francisco spans an extensive 2699 miles.

35I find similar results for alternative thresholds such as the top and bottom 10th percentiles or the top
and bottom 25th percentiles are chosen.
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underscores the significance of face-to-face interaction and proximity for fostering produc-
tive and successful collaboration (Battiston, Blanes i Vidal and Kirchmaier, 2021; Emanuel,
Harrington and Pallais, 2023). However, following Saxenian (1994) who suggests that mere
proximity is insufficient for information exchange among inventors and that collaboration is
necessary, it is possible that the prerequisite of an existing prior connection, which is used
in order to form the foundation for potential collaboration, can compensate for the absence
of later physical proximity. Not to mention that a distance location makes it more likely for
new information to flow.

Given that distance should not be correlated with common shocks, these results provide
additional evidence against the common shock explanation. If the entire effect were attributed
to a common shock, the magnitude and presence of the effect should not vary based on the
distance of the city to which the mover relocates.

5.2 Ruling Out Firm and Network Effects

Substitution Effect. Another explanation to the positive effect estimated may be that the
stayers can substitute collaboration with the mover by collaborating with the mover’s former
collaborators. To test whether this is the force that drives the result I split the sample into
two, based on whether the stayers collaborate with some of the mover’s former collaborators
prior to the move.36 The results reported in Table 7 show that, although the effects when
some replacement exists are larger in a statistically significant way, the effects are still positive
and statistically significant when there is no evidence of replacement. Moreover, the effects
seem to be relatively similar in size to the overall effect, and the group of inventors who
experience some replacement is relatively smaller, suggesting that replacement is unlikely to
be the driving force of the effect.

Network Effects. To investigate whether the diffuse of network effects is an important
channel, I consider the group of real and placebo second degree connections. The results
reported in Table 8 are obtained form specification (5) and show that the relocation has no
significant effect on the productivity of their second degree connections. Hence, suggesting
that network diffusion does not take place.

5.3 The Effect is Driven by the Access to New Information

In this subsection, I provide evidence that the improvement in innovation productivity re-
sulting from the relocation of a co-inventor is primarily influenced by new information that

36These type of collaborations might include the mover as part of the team.
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Table 7: Heterogeneity based on Replacement

No Replacement Some Replacement

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.042∗∗ 0.045∗∗ 0.169 0.315∗∗
(0.020) (0.018) (0.144) (0.135)

Control Post Mean 0.483 0.329 1.159 0.801
Percentage Change +8.79% +13.69% +14.6% +39.37%
P-Value H0: Diff. = 0 0.382 0.047

Observations 544529 544529 11286 11286
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) applied
to two distinct subsets of data. The first subset corresponds to stayer who started co-patenting with
the mover’s prior collaborators after the mover, and the second corresponds to the stayers who did not.
The mover’s former collaborators are defined as inventors their patented with before the relocation. A
stayer experiences some replacement if, after the move, they collaborate with at least one of the movers’
former collaborators, with whom they have never collaborated with prior to the move. Columns (1) and
(2) pertain to scenarios where the stayer experiences no replacement, and columns (3) and (4) delve into
cases where they do. The outcome variable in columns (1) and (3) is the number of patents per year,
while columns (2) and (4) utilize the number of adjusted citations per year, as elaborated in Section 3.
Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

the mover exposes the stayer to. I do that in three steps. In the first step, I provide evidence
that information sharing between the mover and the stayer takes place. I show that the
stayer is more likely to cite patents produced by inventors in the destination location or to
collaborate with inventors in the destination location after the move. I also show that when
the mover changes the main CPC class they patent in, the stayer is also more likely to patent
in the same patent class. And finally, I show that the increase in the productivity is also
positive and statistically significant when I exclude the patents on which the stayer and the
mover collaborate on, suggesting that the information acquired by the stayer is used even on
patents the mover does not collaborate with them on.

As a second step I show that the effect is larger when the mover and the stayer have a
more intense relationship prior to the move. These are the inventors who are more likely to
engage in information sharing, and this result offers a support for that.

In the last step, I show that the effect is larger when the stayer does not have any prior
collaborators in the location the mover relocates to. This result suggest that it is the access
to new information that drives the results rather than information in general.
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Table 8: Second Degree Inventors

(1) (2)
Annual Number of

Patents
Annual Number of
Adjusted Citations

PostMoveReal 0.018 0.019
(0.026) (0.023)

Control Post Mean 0.658 0.447
Percentage Change -0.78% 4.3%

Observations 349693 349693
Individual FE Yes Yes
Year FE Yes Yes
Experience FE Yes Yes

Notes: The information presented in this table presents the results from
regression equation (5) on the sample of second degree co-inventors.
The dependent variable in column (1) is the number of patents per
year and in column (2) is the number of adjusted citations per year, as
defined in Section 3. Standard errors are clustered at the mover level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Share of Citations Made to Mover’s Destination. Citations are considered a valuable
measure to account for knowledge spillovers. Citations are references made to prior work that
is relevant for the current patent scope and was filed before the citing application’s filing date.
An elevated proportion of citations to patents produced in the mover’s destination indicates
a significant exposure to information in that location.

To examine how the citation behavior of the stayers changes after the mover’s relocation,
I calculate the share of citations the stayers attributed to patents located in the mover’s
destination. A patent is said to be produced in a certain location if at least one inventor who
is listed on the patent is located there at the time of the application.

The findings in Table 9 display the outcomes when considering the share of citations
attributed to patents located in the mover’s destination. For the placebo movers, I enforce
the destination of the real mover they are matched to.

The results indicate that, regardless of whether the inventors patent in a given year or not,
there is a notable increase of approximately 11 percent to 12 percent in the share of citations
directed toward inventors situated in the mover’s destination, relative to the placebo group.

Share of Collaborators in Mover’s Destination. Another way to gauge the interaction
between the stayer and the mover, after the relocation, is by examining the proportion or
count of collaborators the stayer has in the mover’s destination. If the collaboration patterns
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Table 9: The Effect of Relocation on Citations to the Destination

(1) (2)
Annual Percentage of

Citations in Destination

All

Annual Percentage of
Citations in Destination

Only When Patenting

PostMoveReal 0.047∗∗ 0.247∗∗∗
(0.023) (0.095)

Control Post Mean 0.436 2.065
Percentage Change +10.71% +11.95%

Observations 555815 142296
Individual FE Yes Yes
Year FE Yes Yes
Experience FE Yes Yes

Notes: The information presented in this table presents the results from regression
equation (5). In column (1), I consider all the observations in the panel, whether or
not the inventor patented in that year, while column (2) covers only the years when
the inventor patents. The unit of analysis in these regressions is still inventor-
year. The dependent is the share of citations given to patents with at lease one
inventor in the mover’s destination. Standard errors are clustered at the mover
level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

between the stayer and other inventors in the mover’s destination undergo changes after the
move, it implies the existence of collaboration spillovers. This suggests that the relocation
of a former collaborator to that location opens up opportunities for network expansion,
which can be highly valuable, both at the individual level and for the firm involved, as these
spillovers can lead to new and beneficial collaborative opportunities, fostering innovation and
knowledge exchange beyond the direct interactions between the mover and the stayer.

I calculate the annual share of collaborators located in the destination per year, and use
it as the dependent variable in regression equation (5).37 Here, I, again, assign the placebo
mover the destination of the real mover they are matched to.

The results presented in Table 10 indicate that, in comparison to the placebo stayers
group, the real stayers experience an increase in the annual share of collaborators they have
in the destination location ranging from 74 percent to 77 percent.

New Technology Classes. Another indication of information flows comes in the form of
the knowledge needed in order to patent in a certain CPC class. When the mover starts

37Similar results are observed if, alternatively, I calculate the share of collaborators in the destination per
patent and then average the values across all patents in the same year.

36



Table 10: The Effect of Relocation on Share of Collaborators to the Destination

(1) (2)
Annual Percentage of

Collaborators in Destination

All

Annual Percentage of
Collaborators in Destination

Only When Patenting

PostMoveReal 1.176∗∗∗ 5.318∗∗∗
(0.096) (0.219)

Control Post Mean 1.525 7.229
Percentage Change +77.10% +73.56%

Observations 555815 142296
Individual FE Yes Yes
Year FE Yes Yes
Experience FE Yes Yes

Notes: The information presented in this table presents the results from regression
equation (5). In column (1), I consider all the observations in the panel, whether or
not the inventor patented in that year, while column (2) covers only the years when
the inventor patents. The unit of analysis in these regressions is still inventor-year.
The dependent variable is the share of collaborators in the destination location.
Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

patenting in a new CPC class after the move, the stayers can either start patenting in this
CPC class as well, or to keep patenting in the CPC class they are familiar with. I define
the CPC class as the model CPC class that the inventors patent in during that year. I look
at the effect on the likelihood of the stayers to patent in the same CPC class as the mover,
conditional on the mover changing theirs.

The result reported in Table 11 show that the real stayers are, on average, 13 percent
more likely to change their technology class to be the same one as the mover after the move,
compared to the control group. And this result is statistically significant.

This result suggest that there is information flow between the mover and the stayer, even
when the information is not necessarily relevant to the CPC class that the stayers used to
patent in.

Excluding Patents with the Mover. One might be worried that the estimated effect is
solely driven by the increase in the productivity of the mover. If the mover and the stayer
maintain their collaborative relationship, and the mover becomes more productive, this can
lead to an increase in the productivity of the stayer through team production, as suggested
by the model. To address this concern, I examine the productivity effects of the real stayers
when I exclude the patents the stayer produces in collaboration with the mover. In that
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Table 11: Patenting in a Different Technology Class

(1)
Patent Class Same as Mover Post Move

PostMoveReal 0.052∗∗∗
(0.008)

Control Post Mean 0.4
Percentage Change +13.11%

Observations 262490
Individual FE Yes
Year FE Yes
Experience FE Yes

Notes: The dependent variable in this table is an indicator of whether
the stayer patents in the same CPC class as the mover. The sample
is restricted to include only the cases where the mover changed their
patenting class after the move. The results are obtained from regression
equation (5).Standard errors are clustered at the mover level. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

case, I estimate the effect on the annual number of patents and annual number of citations
the stayer produces without the mover, which serves as a measure of productivity that is
uncorrelated with the mover’s productivity.

The results in Table 12 show that there is a positive and statistically significant effect
on both the annual number of patents and the annual number of adjusted citations. This
implies that even when considering only the patents are not produced in collaboration with
the mover, the real stayers are more productive. One explanation to these results can be
that the real stayers acquire information from the mover than they can later apply in their
own work, even when the mover does not participate.

Heterogeneity by the Intensity of the Collaboration. To account for how the inten-
sity of the collaboration between the stayer and the mover affect the results, I rum separate
regression conditioning on this characteristic. Specifically, I calculate the number of patents
that the mover and the staying inventor are jointly listed on. The frequency of collaboration
between inventors can indicate their reliance on each other and therefore, frequent collabora-
tors are more likely to maintain their relationship outside of the office setting, enabling them
to sustain their connection even when not co-located. If that is indeed the case, the model
predicts that effect should be stronger.

To capture the intensity of the connection, I create a dummy variable (StrongLink) which
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Table 12: Baseline Specification Excluding Patents Produced with the Mover

(1) (2)
Annual Number of

Patents
Annual Number of
Adjusted Citations

PostMoveReal 0.035∗∗ 0.039∗∗∗
(0.016) (0.015)

Control Post Mean 0.369 0.259
Percentage Change +9.47% +15.17%

Observations 555815 555815
Individual FE Yes Yes
Year FE Yes Yes
Experience FE Yes Yes

Notes: The information presented in this table presents the results
from regression equation (5), when I exclude all the patents the stayer
co-patented with the mover. Column (1) reports the effect on the
annual number of patents, while column (2) shows the effect on the
annual number of adjuated citations. The unit of analysis in these
regressions is still inventor-year. The dependent variable is the share of
collaborators in the destination location. Standard errors are clustered
at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

takes the value one for the top 50th percentile of the distribution of joint patents prior to the
move, indicating a strong connections, and zero for the bottom 50the percentile, representing
weak connections.38 Table 13 presents the results for two separate regression analyses: one
for staying inventors with strong links and another for those with weak links.

The results reported in Table 13 indicate that the effect is large and statistically significant
when the connections between the mover and the stayer are strong. Conversely, for weak
links, the effect diminishes and is no longer statistical significant.39

Access to a New Network. I presented compelling evidence supporting the notion that
the observed increase in productivity is, in part, influenced by knowledge spillovers and net-
work expansion. Now, I delve further into the analysis and demonstrate that these spillovers

38The reason I pick the top and bottom 50th percentile is that the 50th percentile is exactly one joint
patent between the mover and the left behind. Since one joint patent is a requirement by the definition of
being left behind, any other split will only limit the number of observations for the group with strong links.

39When contrasting the results in Appendix E, the outcomes remain positive and statistically significant,
even in the case of weak links. One possible explanation is that in this scenario, if a left behind inventor had
not engaged in patenting activity again after the move, they would not appear in the panel data again. This
situation could introduce bias to the results, as only those who recommenced patenting are retained in the
analysis.
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Table 13: Effect Size and The Strength of the Link

Strong Link Weak Link

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.314∗∗ 0.294∗∗ 0.027 0.030
(0.154) (0.121) (0.023) (0.021)

Control Post Mean 0.971 0.483 0.438 0.305
Percentage Change +32.36% +60.86% +6.07% +9.85%
P-Value H0: Diff. = 0 0.06 0.03

Observations 18380 18380 393254 393254
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) on two
different samples. Columns (1) and (2) correspond to cases where the mover and the left behind are
connected through a strong link, and columns (3) and (4) cover the cases where the mover and the left
behind are connected through a weak link. A strong links is defined as collaborating on more than one
patent prior to the move. The unit of analysis in these regressions is still inventor-year. The dependent
variable in columns (1) and (3) is the number of patents per year and in columns (2) and (4) is the number
of adjusted citations per year, as defined in Section 3. Standard errors are clustered at the mover level. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

have a significant impact primarily when the staying inventor is exposed to a new location.
In other words, I show that the effect on the productivity of a staying inventor who already
has collaborators in the mover’s destination prior to the move is considerably smaller. This
finding suggests that it is the access to the information in a new location that plays a crucial
role in influencing productivity, rather than the relocation itself and the exposure to inventors
in general.

In order to account for the collaboration patterns in the mover’s location, I create a
dummy variable (NewNetwork). This variable takes the value one for the top 10th percentile
of the distribution of the share of collaborators in the mover’s destination prior to the move,
indicating that the inventor gains access to a new network through the mover. Conversely,
it takes the value zero for the bottom 10th percentile, indicating that the inventor did not
access a new network through the mover.

Table 14 presents the results for two separate regression analyses: one for inventors who
gain access to a new network through the mover and another for those who did not, as
defined by the NewNetwork dummy variable. The estimation indicates that the effect
is primarily noticeable among inventors who lack collaborators in the destination location
before the move. In particular, when compared to the placebo left behinds, the real left
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behind experience a 10 percent increase in the annual number of patents and a 21 percent
increase in the annual number of adjusted citations following the move. Conversely, when
an inventor has previously gained access to the network in the destination location through
collaborations with inventors already situated there before the move, the effect is diminished
and lacks statistical significance.

Table 14: The Effect of Relocation and the Access to a New Network

New Network Old Network

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.048∗ 0.069∗∗∗ 0.056 0.054
(0.029) (0.027) (0.059) (0.065)

Control Post Mean 0.472 0.325 0.604 0.397
Percentage Change +10.25% +21.32% +9.25% +13.54%
P-Value H0: Diff. = 0 0.09 0.08

Observations 333731 333731 37373 37373
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5). In
column (1), I consider all the observations in the panel, whether or not the inventor patented in that
year, while column (2) covers only the years when the inventor patents. The unit of analysis in these
regressions is still inventor-year. The dependent variable is the share of collaborators in the destination
location. Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

These results also contradict the common shock concern, as the common shock would
have affected the staying inventor’s productivity regardless of the collaboration patterns in
the mover’s location, as Proposition 3.

6 Conclusion

In this paper I study the impact of an inventor’s relocation on the productivity of their former
collaborators. I leverage a novel dataset that combines patent and inventor information from
the USPTO with inventors’ online professional profiles, which enables me to identify the
movers, track the exact timing of the move, and accurately assign the origin and destination
location.

I construct a model that integrates team-based collaboration and information sharing
within a network. This model allows me to explore each channel in isolation and offers
insights into the underlying dynamics at play. Consequently, I am able to delve into the
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mechanisms potentially underpinning the outcomes and formulate hypotheses about these
channels, which I subsequently investigate through empirical analysis.

I find a positive effect of the relocation of co-inventors and an increase in the produc-
tivity of the inventors they “leave behind.” The productivity measures under consideration
encompass the annual count of patents and the annual number of adjusted citations, which
collectively reflect both the quantity and quality of the patents produced.

Heterogeneous treatment effects underscore the dominant role of information sharing
across different locations. The findings not only point to elevated annual patent and citation
numbers due to this information sharing, but also highlight that the inventor who remains
in the original location expands their network of collaborators and information network into
the mover’s destination. Moreover, inventors remaining in the original location cite patents
originating from the new destination location more frequently, which is consistent with in-
formation sharing.

The tradeoff between increasing productivity through enhancing agglomeration on the
one hand and addressing spatial inequality on the other is at the core of debates around
place-based policies. In this paper, I highlight that, under certain conditions, an inventor’s
relocation can lead to sizeable spillover effects in the origin locations on their former col-
laborators. For these beneficial effects to materialize, the degree of information exchange
is essential, and the information shared depends on the inventor’s history of collaboration
with the mover, their informal links, and the extent to which an innovator’s move leads to
accessing new information networks as perceived by the collaborators staying in the origin lo-
cation. In essence, relocations can lead to brain gain by promoting information sharing across
potentially distanced geographical locations, which should be considered when debating the
policy tradeoff between innovation and spatial inequality.
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Appendix

Preliminary and Incomplete

A Appendix: Proofs

Proof of Proposition 1. The difference in the output over the two periods, ∆Yi is given by:

∆Yi = Y 2
i − Y 1

i

=

{
Ii (2)− Ii (1) + λ

n∑
l=1

wil {gil (2) [αl + Il (2)]− gil (1) [αl + Il (1)]}

}
= Ii (2)− Ii (1) + λwij [gij (2) (αj + Ij (2))− gij (1) (αj + Ij (1))] (6)

where the third equality follows from the assumption that the relocation of inventor j affects
inventor i only in a direct way.

When inventor i and inventor j cut all types of their links – gij (2) = 0 and sij (1) = 0 –
inventors i does not acquire any information in the second period and therefore Ii (2) = Ii (1).
Therefore, equation (6) becomes

∆Yi = −λwij (αj + Ii (1)) < 0

On the other hand, as long as sij = 1, and if the information acquired in the second period
is high enough, such that

Ii (2)− Ii (1) ≥ λwij (αj + Ii (1))

it follows that ∆Yi ≥ 0.

Proof of Proposition 2. Under the assumptions made in this propositions, the effect on the
total output of inventor i is given by

∆Yi (Nj (2)) = Ii (2)− Ii (1)

and therefore, Under the assumptions made in this propositions, the effect on the total output
of inventor i is given by

∆Yi (Nj (2))−∆Yi

(
Ñj (2)

)
= [Ii (2)− Ii (1)]−

[
Ĩi (2)− Ĩi (1)

]
= Ii (2)− Ĩi (2)

where the last equality follows since the information gathered in the first period is equal
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across these two scenarios by definition.
Now, if information sharing between inventor j and inventor i does not take place, then

sij (2) = 0 in both these cases, and no information is acquired in the second period, regardless
of connections inventor j’s forms. Hence,

∆Yi (Nj (2))−∆Yi

(
Ñj (2)

)
= 0

If, on the other hand, the inventors engage in information sharing, then sij (2) = 1, and

Ii (2)− Ĩi (2) =
∑

m∈Nj(2)∖Ni(1)

[w̄im (2)− w̄im (1)] km −
∑

m∈Ñj(2)∖Ni(1)

[w̄im (2)− w̄im (1)] km

=
∑

m∈Nj(2)∖(Ñj(2)∪Ni(1))

[w̄im (2)− w̄im (1)] km

Where the first equality follows by the assumption that inventor i’s direct connections do not
change (besides potentially that with inventor j), and Assumption 1 which implies that as
long as the weight placed on the path leading from inventor i to their indirect collaborators
did not increase, inventor i does not acquire information through them. This implicitly means
that even if inventor j creates a direct link to one of inventor i’s direct connection, further
information is not acquired through that link.

And as long as Nj (2)∖
(
Ñj (2) ∪Ni (1)

)
̸= ∅, the effect on inventor i’s output is positive:

Ii (2)− Ĩi (2) > 0

Proof of Proposition 3. In this case, the innate ability of inventors i and j changes, but the
information they acquire does not depend on the set of inventors they interact with after the
move and

Ii (2) = Ĩj (2)

Therefore,

∆Yi (Nj (2)) = {[αi (2)− αi (1)] + λwij [gij (2)αj (2)− gij (1)αj (1)]} = ∆Yi

(
Ñj (2)

)

Proof of Proposition 4. By definition, the information acquired by inventor i in both periods,
depends on the strength of the relationship between inventor i and inventor j. On the other
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hand, the information acquired by inventor j depends on wji that can be different than wij

and hence does not change, by assumption. Therefore,

∆Yi (wij) = Ii (2)− Ii (1) + λwij {gij (2) [αj + Ij (2)]− gij (1) (αj + Ij (1)]}︸ ︷︷ ︸
X

Similarly,

∆Yi (w̃ij) = Ĩi (2)−Ĩi (1)+λw̃ij {gij (2) [αj + Ij (2)]− gij (1) (αj + Ij (1)]} = Ĩi (2)−Ĩi (1)+λw̃ijX

Now, following equation (??) and the assumption that inventor j is the only inventors moving
in the network, the new information can only be acquired through new connections inventor
j forms, and as long as they are (and were) not directly connected to inventor i. Thus,

Ii (2) = Ii (1) +
n∑

l=1

sij (2) · sjl (2) · (1− sil (1)) · (1− sjl (1))wij · wjl

Ĩi (2) = Ĩi (1) +
n∑

l=1

sij (2) · sjl (2) · (1− sil (1)) · (1− sjl (1)) w̃ij · wjl

And,

Ii (2)− Ii (1) = wij

n∑
l=1

sij (2) · sjl (2) · (1− sil (1)) · (1− sjl (1))wjl︸ ︷︷ ︸
Z

And similarly for Ĩi (2)− Ĩi (1).
This means we can express the effect on inventor i output as:

∆Yi (wij) = wij

{
n∑

l=1

sij (2) · sjl (2) · (1− sil (1)) · (1− sjl (1))wjl + λX

}

Therefore,

|∆Yi (wij)| − |∆Yi (w̃ij)| = wij |Z + λX| − w̃ij |Z + λX|

= (wij − w̃ij) |Z + λX| ≥ 0

with a strict inequality as long as the benefit from the information gained through inventor
j and the cost of discontinuing co-patenting with them do not exactly cancel out. In the
case where inventor i and inventor j cut all of their links (informational and co-patenting)
or when they continue collaborating, the difference will also be strictly positive.

49



B Appendix: Model Extensions

In this section, I present the model without the assumption imposed on the distance the
information can travel. I spell the whole model again, although some of the parts did not
change to maintain some level of continuity.

The main goal of these extension is to emphasize that the predictions do not depend on
this assumption, and that everything else follows.

B.1 Basic Framework

B.1.1 Inventors’ Network

A society of n inventors is connected via a directed and weighted network, which has an
adjacency matrix W ∈ [0, 1]n×n. A general element wij ∈ [0, 1] represents the status and
the strength of the relationship between inventor i and inventor j, where a higher wij is
associated with a stronger connection.40 Specifically, an entry wij = 0 implies that inventor
i and inventor j do not collaborate, and therefore are not connected.

Inventors are also endowed with an innate ability level αi ∈ R+ and with a knowledge
level ki ∈ R+. These concepts play a central role in patent production and information
sharing.

B.1.2 Information Acquisition

Inventors acquire information through their network, not just from their immediate connec-
tions, but also from inventors located farther away. To formalize this concept, it is helpful to
introduce a notion that measures the distance between any to inventors in the network. Let
dij be the length of the shortest path between inventor i and inventor j in the network W.
This distance metric signifies the smallest number of connected inventors forming a sequence
that establishes an indirect link between inventors i and j. Formally, a path of length m

between inventor i and inventor j is an ordered set M = {i1, i2, ..., im+1} such that wilil+1
> 0

for all l ∈ {1, ...,m}, i1 = i and im+1 = j. The length of the shortest path between inventor
i and j is the minimal m that satisfies these conditions. The weight of this path wM

ij is given
by multiplying the weights of the links composing this path, which can be expressed as

wM
ij = Πm

l=1wilil+1

40One way to interpret the weights of the form wij is through the eyes of patents production relationship.
In this case, a higher wij corresponds to a higher number of patents both inventor i and inventor j are jointly
listed on.
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The total information held by inventor i is a result of a combination between their
initial knowledge and what they acquire through interactions with other inventors. Let
D ∈ {1, ..., n− 1} be a bound on the distance information can travel on the network.41 With
this concept and the notation introduced earlier, the total information held by inventor i is
given by:

Ii = ki +
D∑

d=1

∑
{j : dji=d}

w̄jikj (7)

where w̄ji corresponds to the cumulative weight of the shortest paths connecting j and i,
which also meet the condition of being of a minimal distance d.42 These weights represent
the strengths of the paths, and they capture the idea that the information inventor i acquires
through inventor j is proportional to a measure of dependence between them.

Figure B.1 provides two examples that illustrate the bound D and the cumulative weight
of the paths between inventor i and inventor j, w̄ij. The weights above the links represent
the clockwise connections, while those below correspond to the counter-clockwise links.43 In
panel (a), the bound on the distance between inventors for information acquisition purposes
is equal to one. In this scenario, inventor 1 gains information from inventors 2 and 3, and
this information is scaled by w21 = 0.25 and w31 = 0.25, respectively. In panel (b), inventor 1
gains information from inventors 2, 3, 4 and 5, and the information acquired through inventor
5 is scaled by 0.5.

41This meant to express the idea that when two inventors are positioned far apart within the network, they
are less likely to share information with each other. The parameter D specifies what “far apart” means in
this context.

42When inventors i and j are directly connected the cumulative weight w̄ij is equal to the strength of the
link between inventors i and j, wij . When the shortest path between inventors i and j is of length two, w̄ij is
equal to the sum of the weights of the form wil ·wlj where inventor l is directly connected to both inventor i and
inventor j, but inventors i and j are not connected to each other. Formally, w̄ij =

∑n
l=1 wilwij · 1 {wij = 0}.

The formula for longer paths follows the same reasoning, but it becomes more cumbersome as the minimal
distance d increases, since there are more conditions to verify a path is indeed the shortest.

43For example, in panel (a), the weight of the link going from inventor j to inventor i, denoted as wji, is
0.5, whereas the weight of the link from inventor i to inventor j, represented as wij , is 0.25.
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Figure B.1: Information Sharing on Network Example
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B.1.3 Patent Production Function

Inventors produce patents in teams. Each inventor’s total output relies on their individual
output, which is determined by their innate ability and total information they hold, as well
as the output contributed by their collaborators.

Inventor i’s total output is, therefore, given by

Yi = yi +
n∑

j=1

wjiyj (8)

yi = αi + Ii

where yi is inventor i’s individual output.
This production function reflects the substitution between the different sources that drive

output production. It emphasizes the tradeoff between the information accessed through the
network (and one’s fixed innate ability) and the direct benefit one gains from co-patenting,
which comes in the form of the output contributed by their collaborators. This tradeoff will
be the main focus of the next subsection.

B.2 Two Period Model

In general, patents are produce in various geographical locations. As a consequence, inventors
may move around. In this section, I study the effect of a relocation on the total output of
the mover’s former collaborators in the eyes of the model. Specifically, the magnitude and
direction of this effect will be contingent upon the specifics of the connections between these
inventors, and on how their network changes in response to the relocation.

To start with, consider two time periods and two geographical locations. Let t = 1

represent the time before any relocation occurs, and t = 2 reflect the time after the relocations
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have take place, and assume that innate abilities αi and the weighted adjacency matrix W

are fixed across periods. Since the collaboration network can undergo changes between the
two time period, I introduce new notations which capture the state of the network in each
one of these periods. Denote by G (t) ∈ {0, 1}n×n the undirected adjacency matrix at time t.
The ij-th entry is the collaboration status between inventor i and inventor j at time t, with
the entry equals one if they co-patent, and zero otherwise. This relationship is reciprocal.
Additionally, let S (t) ∈ {0, 1}n×n be the undirected information exchange network at time t.
This is a symmetric matrix whose entries equal to one whenever the inventors are engaged
in information sharing. In the initial period, information sharing occurs exclusively when
inventors co-patent. However, after the relocation, in period t = 2, inventors who previously
co-patented in t = 1 may cease their collaboration in period t = 2, and yet still engage in
information sharing. Formally,

gij (1) ⇐⇒ sij (1) = 1 ∀i, j

gij (2) =⇒ sij (2) = 1 ∀i, j

Lastly, Ii (t) is the level of the information held by inventor i at time t, where the paths
are now measured on the network S (t).44

B.2.1 Information Acquisition

To accommodate some degree of continuity across the two periods, I assume that

Assumption 2. The information inventors acquired in the first period cannot be forgotten,
and therefore is not subject to relearning.

This implies that inventor i begins period t = 2 with knowledge that is equal to Ii (1),
rather than ki, as it is at the beginning of period t = 1.

The idea behind this assumption is that once techniques and ideas are acquired, they
can’t be unlearned. Once learned, inventors can use them again without relearning.

In particular, equation (1) becomes

Ii (1) = ki +
D∑

d=1

∑
{j : dji(1)=d}

w̄ji (1) kj ∀i

Ii (2) = Ii (1) +
∑

{j : dji(2)=d}

1 {w̄ji (2) > w̄ji (1)] · [w̄ji (2)− w̄ji (1)] kj ∀i (9)

44In the first period, the elements of the matrix G (1) and S (1) are equivalent to the indicators 1 {wij > 0}.
Therefore, the paths on W, G (1) and on S (1) are the same. However, in the second period, since information
exchange can take place even when then inventors do not collaborate, it does not necessarily hold.
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where dji (t) denotes the minimal distance on the matrix S (t) and w̄ji (t) corresponds to the
cumulative paths weights on matrix S (t).45 The multiplication by the elements 1 {w̄ji (2) > w̄ji (1)}
imposes the restriction that information can only be acquired in the second period, and can-
not be forgotten.

B.2.2 Patent Production

Production in both periods follows the same reasoning as in equation (2), with total output
depending on both individual and scaled collaborative outputs. That is,

Yi (t) = yi (t) +
n∑

j=1

gji (t)wjiyj ∀i

yi (t) = αi + Ii (t) ∀i

45Although the matrix W is fixed across the two time periods, the potential differences in the matrices
S (1) and S (t) can lead to differences in w̄ji (t) across the time periods, if new paths are formed and/or old
paths are severed.
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C Appendix: Data

C.1 Description of Patent Data

The information about the patents I use is from the USPTO PatentsView. Besides supplying
information about inventors and patents, they also conduct a disambiguation procedure where
each inventor gets a unique identifier number, and all of their patents and the information
provided at the time of the application are attached to it. This is not trivial as inventors
might use different names at the time of the application and are not necessarily patenting
under the same assignee or in the same location.

The data I use is patent applications for patents which were eventually granted between
1976 and 2022. The data is provided in a TSV format, where each inventor, location and
patent has a unique identifier. Using these identifiers, I can merge all the information given
in an application about a specific inventor. In particular, the inventor’s name, the names of
the other inventors who are listed with them on the patent, the date of the application as well
as the date at which the patent was granted, the number of citations the patent received and
which patents cited it, the citations granted by that patent, the CPC classes of the patents,
the residential address of the inventor and the assignee and the headquarters’s address.

C.2 Construction of the Sample

I restrict the sample of the USPTO patent application to include only inventors whose first
patent was applied for on 1990 or after. The reason is that online professional profiles were
introduced in 2008, and older people, mainly ones who have already retired or are close to
retirement, are less likely to have an account due to its purpose being a device that makes it
easier to learn about individuals’ work history and potentially ease hiring and recruitment.
That way I can ensure, with a higher likelihood, that the linking rates are not biased by the
probability of opening an account.

I also exclude a very small number of patent numbers who were “withdrawn,” which
can be found in https://www.uspto.gov/patents/search/withdrawn-patent-numbers. Patent
numbers are assigneed before the patents are granted. If between the date at which the
patent number was assigned and the date of the issuance of the patent some information
that indicates that the application is not ready to be issued is reveled, the patent is not
granted at that date and the number will never be used again.46 It is important to note,
however, that the application can still be issued, and in this case, it will be issued under
a different patent number. Therefore, dropping the withdrawn patent numbers have two

46This may happen if, for example, the fees were not paid in full or if some prior art was found.
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purposes. The first, is to avoid including ideas that were not patented after all. And second,
to avoid double counting patents, in cases where they were issued under different patent
numbers.

Another point is about how to assign CPC classes to patents. When patents are granted
and published, more than one CPC class is usually assigned. Following the general method
in the literature, the CPC class I assign to the patent is the one listed first in the sequence.

C.3 Linking Algorithm to Construct the Dataset

Both the USPTO data and the data I receive through Revelio Labs have different advantages.
While the USPTO dataset provides me with information about the patenting activity of
inventors, and their physical location at the time of the application, the information that
includes data from online professional profiles, adds to this demographics, work locations
and the company workers are employed by at each point in time. Only the combination of
both these datasets will allow me to construct the panel that I need in order to study the
effect of inventor mobility on their co-inventor productivity.

I leverage as much information as I can from both these dataset to construct the linking in
a way that minimizes mistakes. There are two types of possible mistakes. The first is about
not linking an inventor that should have otherwise be linked. These mistakes, although costly
in term of number of observations, are less likely to bias the data. The type of mistakes that
I try most to avoid are the ones around linking an inventor and a user that should not be
linked. And my methodology, focuses mainly on the second, although I try to account for
both.

The linking is performed on three identifiers. The first is the inventor and the user
names. As a first step I only consider the first and last name of the inventor and the user.
An inventor is linked to a user if and only if their first and last name match exactly. This
implies that there are some inventors I cannot match due to usage of different names on
their patent application and their online professional profile. An example is an inventors
who uses their full name on their patent and their nickname on their online professional
profile.47 The second element I link on is the state the inventor lived in at the time of the
application, and the state the user lists as the location of their workplace at a six-month
window around the application data.48 Linking on the state level can create issues involving
the difference between workplace location and residential address. At the application stage
inventors are asked to provide their residential address. That is, they report their home

47Some of the common names and nicknames are “Robert” and “Bob” or “William” and “Bill.”
48Some users take time to update their online professional profiles with their new employers. In order to

allow for some flexibility, I allow the state to match even in an earlier or a later stage.
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address. On online professional profiles, users provide the state at which their work takes
place. That is, the location of their office. When inventors live and work in different states,
they will not be linked to their user. The last characteristics I link inventors and users on
is their employer. I begin with standardizing the USPTO assignees and the online profes-
sional profiles companies following the standardizing method in the NBER’s Patent Data
Project (https://sites.google.com/ site/patentdataproject/). For example, “AMAZON” and
“AMAZON USA” are the same company. I also do not use any abbreviations for companies.
That is, whenever a company is known to be abbreviated, such as in “IBM,” I change all
of its instances to “INTERNATIONAL BUSINESS MACHINES” to avoid mismatched for
that reason. I, then, use a fuzzy match, linking between the standardize assignee on the
inventor’s application and the standardize user’s employer at the time of the application.
More precisely, I use Jaro-Winkler distance measure and set the threshold for match at 0.99.
This is a quite high threshold, ensuring that I so not mismatch between different companies
and assignees. Finally, I include only inventors who are linked to exactly one user, and I use
middle initials to break ties.

There are at least two issues which follow from the last step. The first is that the assignee
is not necessarily the employer of all the inventors on the patent. It is usually the case that at
least one inventor is employed by the company listed as an assignee, but it is not necessarily
the case that all of the inventors are.49 In these cases, the inventor and the user will not be
matched. The second issue might arise in cases where mergers are acquisitions are involved.
In these cases users in online professional profiles, might update their user to include the
information about the acquiring firm rather than the name of the firm they were employed
in prior to the acquisition. If at the time of the application the merger or acquisition has not
taken place yet, there will be inconsistency between the information on the online professional
profile and the information on their USPTO application.

Characteristics of Linked and Unlined Inventors

Table C.1 presents the summary statistics of the linked and the full samples. It shows that
the linked inventors tend to be more productive, and that is due to the fact that linking is
easier the more observations there are as it increases the accuracy.

Adding to the information in Table C.1 the BEA’s “economic areas” with the lowest
linking rates are Great Falls MT, Aberdeen SD, Cape Girardeau-Jackson MO-IL, Lewiston
ID-WA and Panama City-Lynn Haven FL. And the BEA’s “economic areas” with the highest
linking rates are Seattle-Tacoma-Olympia WA, San Jose-San Francisco-Oakland CA, San
Diego-Carlsbad-San Marcos CA, Milwaukee-Racine-Waukesha WI, Minneapolis-St. Paul-St.

49There are also cases where more than once assignee is listed, and in this case I check all the combinations.
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Table C.1: Summary Statistics on Full and Linked Samples

Panel A: Full Sample

Mean Median Std. Dev # Obs.

Year of First Patent 2004 2004 8 1,150,368
Total Number of Patents 4.39 2.00 7.06 1,150,368
Total Citations Stock 62.80 11.00 159.30 1,150,368
Total Adjusted Citations Stock 3.19 0.96 6.24 1,150,368
Average Team Size 2.75 2.25 1.85 1,150,368
Male 0.85 1.00 0.35 1,048,732

Panel B: Linked Sample

Mean Median Std. Dev # Obs.

Year of First Patent 2007 2009 9 229,290
Total Number of Patents 6.41 3.00 9.18 229,290
Total Citations Stock 78.82 8.00 200.24 229,290
Total Adjusted Citations Stock 4.34 1.26 7.75 229,290
Average Team Size 3.01 2.60 1.85 229,290
Male 0.85 1.00 0.35 207,203

Notes: The table provides summary statistics for two datasets. Panel A presents
the attributes of inventors based in the United States within the patent data,
encompassing inventors who initiated patenting activities for the first time after
1990 and never indicated a residential address outside of the United States. Panel B
offers summary statistics for the inventors successfully matched to the Revelio Labs
data. All variables represent cumulative values over the entire observed period.
The Average Team Size is computed across all patents, with a solo patent being
considered as a team size of one.

Cloud MN-WI, Raleigh-Durham-Cary NC and Boston-Worcester-Manchester, MA-NH. The
latter are more associated with patenting activity.

Moreover, as anticipated, younger inventors have more incentives and are more likely to
setup an online account. For that reason, the years of the first patent which is associated with
the lowest linking rates are 1990-2004, where the linking rates are monotonically decreasing
with the years. And the highest linking rates correspond to inventors patenting for the first
time in the years 2013-2020. Where, in this case, the linking rates is monotonically increasing
in the years.

The last characteristic I looked at in the CPC classes the linked and and unlinked inventors
patent in. The lowest rated of linking are associated with the following CPC classes:
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Table C.2: Lowest Linking Rates CPC Classes

CPC Class Title
B43 WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES

B44 DECORATIVE ARTS

B63 SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT

B68 SADDLERY; UPHOLSTERY

A45 HAND OR TRAVELLING ARTICLES

A46 BRUSHWARE

Table C.3: Highest Linking Rates CPC Classes

CPC Class Title
B06 GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS

IN GENERAL

B33 ADDITIVE MANUFACTURING TECHNOLOGY

C07 ORGANIC CHEMISTRY

F15 FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS
IN GENERAL

G06 COMPUTING; CALCULATING OR COUNTING

G16 INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY
ADAPTED FOR SPECIFIC APPLICATION FIELDS

H03 ELECTRONIC CIRCUITRY

H04 ELECTRIC COMMUNICATION TECHNIQUE

Note that these CPC classes are aligned with the locations of the linked or unlinked
inventors, respectively. To put differently, the main CPC classes in these areas match the
CPC classes with the highest or lowest linking rates, respectively.
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D Appendix: German Inventors

In the clearance process.
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E Appendix: Full Sample
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F Appendix: Additional Figures and Tables

Figure F.1: Bureau of Economic Analysis’ “Economic Areas” Map

Notes: This figure presents the BEA’s economic areas map and compares them the MSA’s, painted in pink.
One can see that the size of the economic areas changes across locations, and it may coincide with the
corresponding MSA, but it can also be larger.
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Table F.1: Effect Size and Within vs. Between Firm Move

Within Firm Across Firms

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.076∗∗∗ 0.085∗∗∗ 0.061∗∗ 0.055∗∗
(0.021) (0.021) (0.029) (0.026)

Control Post Mean 0.501 0.336 0.498 0.348
Percentage Change +15.08% +25.23% +12.18% +15.78%
P-Value H0: Diff. = 0 0.67 0.36

Observations 223955 223955 331860 331860
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) on two
different samples. Columns (1) and (2) correspond to cases where the mover moves within the same
firm, and columns (3) and (4) cover the cases where the mover moves across firms. The unit of analysis
in these regressions is still inventor-year. The dependent variable in columns (1) and (3) is the number
of patents per year and in columns (2) and (4) is the number of adjusted citations per year, as defined
in Section 3. Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table F.2: Effect Size and the Characteristics of Across Firm Move

Corp.-Corp. Non-Corp.-Corp.

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.071∗∗∗ 0.047∗ -0.015 -0.015
(0.027) (0.027) (0.088) (0.066)

Control Post Mean 0.441 0.326 0.517 0.345
Percentage Change +16.15% +14.29% -2.95% -4.42%

Observations 315511 315511 52956 52956
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) on two
different samples. Columns (1) and (2) correspond to cases where the mover and the left behind are of the
same sex, and columns (3) and (4) cover the cases where the mover and the left behind are of opposite
sexes. The unit of analysis in these regressions is still inventor-year. The dependent variable in columns (1)
and (3) is the number of patents per year and in columns (2) and (4) is the number of adjusted citations
per year, as defined in Section 3. Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table F.3: Heterogeneity based on Good vs. Bad Moves

Bad Move Good Move

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal -0.008 0.019 0.178∗∗∗ 0.128∗∗∗
(0.017) (0.015) (0.044) (0.042)

Control Post Mean 0.442 0.289 0.639 0.464
Percentage Change +-1.82% +6.59% +27.88% +27.49%
P-Value H0: Diff. = 0 00 0.01

Observations 149064 149064 406751 406751
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) applied
to two distinct subsets of data. Specifically, Columns (1) and (2) pertain to scenarios where the mover
relocates to a location where the density of inventors who patent in the same CPC class is higher, and
columns (3) and (4) delve into the opposite case. The unit of analysis remains inventor-year in these
regression analyses. Columns (1) and (3) encompass the number of patents per year as the dependent
variable, while columns (2) and (4) utilize the number of adjusted citations per year, as elaborated in
Section 3. Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table F.4: The Effect of a Relocation and Race Differences

Same Race Different Races

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.049∗∗∗ 0.048∗∗∗ 0.038 0.057
(0.018) (0.017) (0.043) (0.039)

Control Post Mean 0.499 0.348 0.503 0.324
Percentage Change +9.80% +13.9% +7.49% +17.65%
P-Value H0: Diff. = 0 0.80 0.833

Observations 366726 366726 189089 189089
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) applied
to two distinct subsets of data. Columns (1) and (2) address situations where the mover and the left
behind inventor have the same race. Columns (3) and (4) report the results when the mover and the
left behind inventors have different races. The unit of analysis remains inventor-year in these regression
analyses. Columns (1) and (3) encompass the number of patents per year as the dependent variable,
while columns (2) and (4) utilize the number of adjusted citations per year, as elaborated in Section 3.
Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table F.5: The Effect of Relocation on Share of Collaborators to the Destination Patent
Based Measure

(1) (2)
Annual Percentage of

Collaborators in Destination

All

Annual Percentage of
Collaborators in Destination

Only When Patenting

PostMoveReal 1.172∗∗∗ 5.291∗∗∗
(0.096) (0.222)

Control Post Mean 1.523 7.216
Percentage Change +76.94% +73.32%

Observations 555815 142296
Individual FE Yes Yes
Year FE Yes Yes
Experience FE Yes Yes

Notes: The information presented in this table presents the results from regression
equation (5). In column (1), I consider all the observations in the panel, whether or
not the inventor patented in that year, while column (2) covers only the years when
the inventor patents. The unit of analysis in these regressions is still inventor-year.
The dependent variable is the share of collaborators in the destination location.
Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

65



Table F.6: The Effect of a Relocation and Gender Differences

Panel A: Same Sex

Male-Male Female-Female

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.042∗∗ 0.043∗∗ -0.021 -0.054
(0.018) (0.018) (0.056) (0.068)

Control Post Mean 0.517 0.362 0.424 0.289
Percentage Change +8.07% +12% -4.93% -18.6%
P-Value H0: Diff. = 0 0.28 0.16

Observations 343092 343092 14969 14969
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Panel B: Opposite Sex

Male-Female Female-Male

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.039 0.064 -0.052 -0.021
(0.038) (0.039) (0.060) (0.043)

Control Post Mean 0.395 0.252 0.583 0.349
Percentage Change +9.94% +25.5% -8.87% -6.09%
P-Value H0: Diff. = 0 0.95 0.62 0.13 0.16

Observations 54593 54593 54696 54696
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) applied
to four distinct subsets of data. Each subset corresponds to a different combination of the sexes of
both the mover and the left behind inventor. Panel A addresses situations where the mover and the
left behind inventor share the same sex. Specifically, Columns (1) and (2) pertain to scenarios where
both the mover and the left behind are males, and columns (3) and (4) delve into cases where both
the mover and the left behind are females. On the other hand, Panel B delves into scenarios where the
sexes of the mover and the left behind inventor differ. Columns (1) and (2) within this panel represent
cases where the mover is male and the left behind is female, while columns (3) and (4) encapsulate the
reverse situation—where the mover is female and the left behind is male. The unit of analysis remains
inventor-year in these regression analyses. Columns (1) and (3) encompass the number of patents per
year as the dependent variable, while columns (2) and (4) utilize the number of adjusted citations per
year, as elaborated in Section 3. Standard errors are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table F.7: The Effect of Relocation and Continued Collaboration

Continued Collaboration with Mover No Collaboration with Mover

(1) (2) (3) (4)
Annual Number of

Patents
Annual Number of
Adjusted Citations

Annual Number of
Patents

Annual Number of
Adjusted Citations

PostMoveReal 0.055∗∗ 0.041∗∗ 0.003 0.059
(0.023) (0.020) (0.038) (0.038)

Control Post Mean 0.34 0.22 0.95 0.66
Percentage Change +16.01% +18.15% +0.3% +8.87%
P-Value H0: Diff. = 0 0.243 0.677

Observations 426153 426153 129662 129662
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Experience FE Yes Yes Yes Yes

Notes: The information presented in this table presents the results from regression equation (5) applied
to two distinct subsets of data. The first subset corresponds to left behind inventors who continue
to collaborate with their respective mover, while the second one corresponds to cases where they stop
collaborating with one another after the move. Columns (1) and (2) pertain to scenarios where the left
behind and the mover continue to collaborate, and columns (3) and (4) delve into cases where they do
not. The outcome variable in columns (1) and (3) is the number of patents per year, while columns (2)
and (4) utilize the number of adjusted citations per year, as elaborated in Section 3. Standard errors
are clustered at the mover level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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